Pattonville High School Ambient Air Sampling Prior To and During RCP Removal at Bridgeton Landfill May 2013: Summary of Findings

> Bridgeton Landfill, LLC 13570 St. Charles Rock Road Bridgeton, MO 63044

> > July 25, 2013

This document entitled *Pattonville High School Ambient Air Sampling Prior To and During RCP Removal at Bridgeton Landfill May 2013: Summary of Findings* was prepared by Stantec Consulting Services Inc. (Stantec) at the request of Bridgeton Landfill, LLC. The material in it reflects Stantec's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Prepared by

Deborah L. Gray, Ph.D., DABT

Prepared by

Chris La Londe, MPH

e C

Reviewed by

John Reiter, CIH

Executive Summary

The administration of the Pattonville High School requested that air sampling be conducted to determine if excavation into the Bridgeton Landfill to remove remnants of reinforced concrete pipe (RCP) could be impacting the air quality on the high school campus. Activities to remove the RCP commenced the week of May 20, 2013 which was also the last week of school. After reaching agreement with the Pattonville School administration on schedule, Bridgeton Landfill, LLC authorized Stantec Consulting Services Inc. ("Stantec") to collect samples of ambient air on the campus between Tuesday, May 21 and Thursday, May 23, 2013.

The Pattonville High School is located at 2497 Creve Coeur Mill Road, Maryland Heights, Missouri (the "High School") and is approximately 1.5 miles to the southwest of the Bridgeton Landfill, which is located at 13570 St. Charles Rock Road, Bridgeton, Missouri. Ambient air samples were collected from various locations: 1) the high school campus; 2) a location between the RCP removal and the High School (the Materialogic commercial property adjacent to the Metropolitan Sewer District lift station located along Old St. Charles Rock Road); and 3) a background location. Samples were analyzed for the constituents of potential concern that have been analyzed during other ambient air sampling events at Bridgeton Landfill and surrounding areas. These include (Table 1):

- Ammonia: OSHA ID-188
- Reduced Sulfur Compounds: ASTM D5504
- Volatile Organic Compounds and Tentatively Identified Compounds: EPA TO-15
- Aldehydes (Carbonyl Compounds): EPA TO-11A
- Amines (Aliphatic): AQL 101
- Carboxylic Acids: AQL 102
- Polycyclic Aromatic Hydrocarbons (PAHs): EPA TO-13A
- Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (Dioxins/Dibenzofurans): EPA TO-9

Table 2 presents the concentration of compounds detected by location. Detected concentrations were compared to the conservative US Environmental Protection Agency ("US EPA") Regional Screening Levels ("RSLs") for chronic residential exposure over a lifetime. The concentrations of all constituents found in air samples from the High School were similar to the results from the background location and from the Materialogic property. The results include:

• Ammonia was found only in the background location (and may be an anomalous result).

- No reduced sulfur compounds (including hydrogen sulfide), amines, or carboxylic acids were detected in any sample.
- Concentrations of dioxin found at both the school and the Materialogic property were approximately ten times lower than the US EPA residential RSL.
- Low concentrations of a number of common volatile organic compounds (VOCs), aldehydes, polycyclic aromatic hydrocarbons (PAHs) and dioxins were found in the ambient air samples from the High School and the locations near Bridgeton Landfill.

With the exception of formaldehyde and acetaldehyde (and ammonia in the background location), the levels of all detected constituents were lower than the conservative residential RSLs. The RSLs for formaldehyde and acetaldehyde, two common aldehydes, are just above the laboratory detection limits. Consequently almost any detection of formaldehyde and acetaldehyde will exceed the RSLs for residential exposure. In this case, the US EPA School Air Toxics Initiative Individual Screening Levels (ISLs) are informative and applicable. None of the formaldehyde or acetaldehyde concentrations approached the School ISLs of 50 μ g/m³ and 90 μ g/m³, respectively. Formaldehyde and acetaldehyde are associated with a number of sources, including automotive and diesel exhaust emissions, and low levels are ubiquitous in ambient air.

The results of the sampling support the conclusion that there were no measurable effects on the air quality at the Pattonville High School during the last week of classes that could be attributed to the excavation to remove the RCP from the Bridgeton Landfill.

Table of Contents

1.0	INTRODUCTION 1	I
2.0	CONSTITUENTS OF INTEREST IN AIR	2
3.0 3.1 3.2	SAMPLING METHODOLOGY	555
4.0 4.1	SAMPLING LOCATIONS	;
5.0 5.1	ANALYTICAL RESULTS.7RESULTS OF AMBIENT AIR SAMPLES FROM THE HIGH SCHOOL AND COMPARISON7LOCATIONS75.1.1Analytes Not Detected in Any Sample75.1.2Ammonia75.1.3Volatile Organic Compounds75.1.4Aldehydes85.1.5Polycyclic Aromatic Hydrocarbons95.1.6Dioxins/Dibenzofurans9	
6.0 6.1	DISCUSSION OF SAMPLING RESULTS 10 APPLICABLE PUBLIC HEALTH STANDARDS 10 6.1.1 Risk-Based Screening Levels 10 6.1.2 Comparison to Risk-Based Screening Levels 10	-))))
7.0	SUMMARY AND CONCLUSIONS12	2
8.0	TABLES & FIGURES	\$
9.0	APPENDIX A. LABORATORY ANALYTICAL REPORTS13	\$
10.0	PREFERENCES14	ŀ

1.0 Introduction

The administration of the Pattonville High School (the "High School") requested that air sampling be conducted to determine if excavation into Bridgeton Landfill to remove remnants of reinforced concrete pipe ("RCP") could be impacting the air quality at the High School.. The High School is located at 2497 Creve Coeur Mill Road, Maryland Heights, Missouri approximately one and a half (1.5) miles to the southwest of the Bridgeton Landfill which is located at 13570 St. Charles Rock Road, Bridgeton, Missouri (Figure 1). The High School is situated immediately adjacent to a large operating landfill and recycling facility (Champ Sanitary Landfill) which supplies natural gas to the school.

Bridgeton Landfill, LLC authorized Stantec Consulting Services Inc. ("Stantec") to conduct air monitoring on the school campus comparable to that being conducted on Bridgeton Landfill itself and at community locations in close proximity to Bridgeton Landfill. The schedule for collecting samples and the chemicals to be analyzed were agreed upon between Mr. Ron Orr, CFO of the Pattonville School District and Stantec.

Excavation to remove the RCP commenced on Wednesday May 20, 2013, during the last week of classes at the school. Stantec collected air samples during the three day period of Tuesday, May 21 through Thursday, May 23, 2013. Since the RCP excavation activities began on Wednesday, May 22, 2013, the data collected on Tuesday, May 21, 2013 is considered to represent conditions at the school in the absence of any potential airborne releases from excavation activities at Bridgeton Landfill. Samples for dioxins/dibenzofurans were collected from approximately 11:00 a.m. Wednesday May 22 to 11:00 a.m. Thursday May 23 and represent conditions during the time when the students were on campus and excavation activities were occurring at Bridgeton Landfill.

PATTONVILLE HIGH SCHOOL AMBIENT AIR SAMPLING PRIOR TO AND DURING RCP REMOVAL AT BRIDGETON LANDFILL MAY 2013: SUMMARY OF FINDINGS

2.0 Constituents of Interest in Air

Sample collection protocols and laboratory analytical methods were consistent with US Environmental Protection Agency ("US EPA"), Occupational Safety and Health Administration ("OSHA"), American Society for Testing and Materials ("ASTM") and methods developed by Columbia Analytical Laboratories ("CAL/ALS") specifically for odor investigations. A summary of all analytical methods are presented in Table 1. As requested by the Pattonville School administration and agreed to by Bridgeton Landfill, LLC, samples of ambient air were analyzed for the following individual constituents and analytical groupings:

- Aldehydes (Carbonyl Compounds): EPA TO-11A
- Amines (Aliphatic): AQL 101
- Ammonia: OSHA ID-188F
- Carboxylic Acids: AQL 102
- Reduced Sulfur Compounds: ASTM D5504
- Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs): EPA TO-15
- Polycyclic Aromatic Hydrocarbons (PAHs): EPA TO-13A
- Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (Dioxins/Dibenzofurans): EPA TO-9

3.0 Sampling Methodology

3.1 COLLECTION OF AMBIENT AIR SAMPLES

With the exception of samples for quantification of PAHs and Dioxins/Dibenzofurans ("dioxins"), relatively small volumes of ambient air were required. Gilian Gilair 3[™] personal sampling pumps ("PSPs") equipped with low flow controllers were deployed to collect samples for aldehydes, amines, ammonia and carboxylic acids. Samples for the quantification of volatile organic compounds and reduced sulfur compounds were collected using silica-lined SUMMA™ canisters equipped with 4 hour flow control regulators. All ambient air samples were collected at "breathing zone" height by mounting the PSPs and SUMMA[™] canisters on a tower constructed of plastic milk crates so that the sample collection intake ports were approximately 3 to 6 feet above the ground surface. Air samples for all constituents except dioxins and PAHs were collected over a 4-hour period during the school day on Tuesday, May 21 and then again on Thursday, May 23, 2013. Samples for quantification of PAHs and dioxins require large quantities of air to be drawn through special Polyurethane Foam ("PUF") filters using Tisch[™] high-volume sampling pumps over (generally) a 24-hour period. The high-volume samplers required an uninterrupted AC power supply to run the pumps. Electrical power was accessible for all of the sample locations. Samples for PAHs and dioxins were collected over a 24 hour period, beginning on Wednesday, May 22 and ending on Thursday, May 23, 2013. Sample locations are described in section 4.0.

3.2 QUALITY ASSURANCE PROCEDURES FOR SAMPLE COLLECTION

Sample quality assurance encompasses procedures used for pre-sample calibration of sampling pumps, handling of samples before, during, and after collection, post-calibration of sampling pumps; elimination of potential cross contamination and elimination of collection of interfering compounds or materials.

All sampling pumps were pre-calibrated using a BIOS Defender Model 510-M revC1 (*BIOS International, Mesa Labs, Butler, New Jersey*) mechanical/digital calibration device traceable to the National Bureau of Standards (NIST) with a laboratory supplied calibration tube for each type of sample. After sample collection, and prior to collecting the next set of samples, the pumps were post-calibrated using the same calibration device and the laboratory supplied calibration tube. Where discrepancies appeared in pump flow rates between pre- and post-calibration, the change was assumed to be linear over time and the sample volume provided to the analytical lab and used in determining concentration was the arithmetic average of the pre- and post-calibration values (consistent with industry standard methods).

All of the Tisch [®] high volume PUF air samplers were pre-calibrated, utilizing manufacturer's guidelines (*Tisch Environmental, Inc. Operations Manual TE-PUF Poly-Urethane Foam High Volume Air Sampler*) prior to sample collection. Calibration of the PUF samplers was performed without a foam plug or filter paper. The glass cartridge was in the module to prevent leaks and ensure a good seal. A TE-5040A Calibrator (orifice) was placed on top of the 4" filter holder and the manometer was connected to the pressure top on the calibrator. The unit was

then turned on and 5 manometer readings were recorded with the magnahelic set at 70, 60, 50, 40 and 30 inches of water, respectively. The manometer readings were converted to standard air flows (cubic meters per inch) using the following equation:

Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]

where:

Qstd = actual flow rate as indicated by the calibrator orifice, m3/min H20 = orifice manometer reading during calibration, in. H20 Ta = ambient temperature during calibration, K ($K = 273 + ^{\circ}C$) 298 = standard temperature, a constant that never changes, K Pa = ambient barometric pressure during calibration, mm Hg 760 = standard barometric pressure, a constant that never changes, mm Hg m = *Qstandard slope of orifice* calibration relationship b = *Qstandard intercept of orifice* calibration relationship.

The Magnehelic Gage readings was then corrected for current meteorological conditions using the following equation:

FLOW (corrected) = Sqrt((magn)(Pa/760)(298/Ta))

where:

FLOW (corrected) = Magnehelic Gage readings corrected to current Ta and Pa magn = Magnehelic Gage readings during calibration Pa = ambient barometric pressure during calibration, mm Hg 760 = standard barometric pressure, a constant, mm Hg Ta = ambient temperature during calibration, K (K = 273 + °C) 298 = standard temperature, a constant, K

A calibration curve was created for each PUF sampler by graphing the Qstd and corrected flow on an "xy" coordinate system. Using least squares regression, a linear equation was created, yielding a slope, intercept and correlation coefficient. The calibration curve and resulting linear equations were used to calculate flow rates for the sampling event. The correlation coefficient is applied to determine the linearity of the calibration curve. If the curve is not linear (correlation coefficient approximately 0.99) the system is checked for leaks.

Polyurethane filter (PUF) samples for PAHs and dioxins are received from the lab in individual glass sample containers, wrapped in aluminum foil, and shipped on ice-packs in coolers. When ready for sampling, the aluminum outer wrap is removed and the entire glass sample vessel is placed in the high-volume sampler sampling head. Following sampling the process is reversed and the glass sampling vessel is removed and rewrapped in aluminum foil. The PUF is never touched by field personnel's hands.

Samples are shipped back to the analytical laboratory in the same way they were received, with individual sample numbers written on the exterior of the aluminum foil wrapper, shipped on ice packs in a cooler. Appropriate sample transmittals and chains-of-custody are prepared and

Stantec PATTONVILLE HIGH SCHOOL AMBIENT AIR SAMPLING PRIOR TO AND DURING RCP REMOVAL AT BRIDGETON LANDFILL MAY 2013: SUMMARY OF FINDINGS

returned with the samples. Other controls, as outlined above for sorbent tube and SUMMA canister samples, apply also to PAH and dioxin samples.

Contemporary sampling media provides little opportunity for cross-contamination or external contamination. Media does not off-gas materials that could be collected in another sample and interfere with accurate analysis or reporting. Similarly, media is well protected by its manufactured configuration at all times so that external dirt, debris, or other materials cannot be readily introduced. All media were virgin materials. SUMMATM canisters were cleaned and prepared by the analytical laboratory in a manner consistent and appropriate for re-use. After sampling, samples were capped and air-tightly secured, labeled with a unique sample identification code ("Sample ID"), which includes the sample date and a sample location identifier. In order to reduce volatilization or de-adsorption from the media, sets of samples in sealable bags were stored in a secured refrigerator located at Bridgeton Landfill until shipped to the laboratory for analysis. All samples were shipped following laboratory guidance using overnight delivery to ensure maximum holding times were not exceeded. Proper chain-of-custody are included in the laboratory analytical report.

4.0 Sampling Locations

Figure 1 shows an aerial view of Bridgeton Landfill, adjacent properties and the Pattonville High School. Locations where ambient samples were collected are indicated. The locations were located using the GPS coordinates recorded at the time of sample collection. All sample locations were selected and mutually agreed upon by Bridgeton Landfill, LLC, Stantec and the school administration on the days that the samples were collected to ensure sample locations were representative based upon conditions on that day.

4.1 DESCRIPTION OF SAMPLE LOCATIONS

The three ambient air sample locations were designated as "the Grassy Knoll", the "MSD Lift Station" and "High School". Sampling locations were selected in an attempt to discriminate between the potential sources of compounds detected in ambient air given the numerous potential sources for many of the compounds evaluated. Potential sources include, but are not limited to: Bridgeton Landfill, Champ Sanitary Landfill, Weber Quarry, industrial sources, automobile exhaust as well as compounds routinely identified in urban air.

The High School and MSD Lift Station lie along a conceptual vector which runs from the northeast to southwest, transecting Bridgeton Landfill (northeast), the MSD lift station adjacent to the Materialogic parking lot on Old St. Charles Rock Road to the immediate southwest of the Bridgeton Landfill where activities are taking place, the Pattonville High School and the Champ Sanitary Landfill on the southwest end of the vector. The Grassy Knoll location is on the far northwest portion of the Bridgeton Landfill property and is frequently (but not always) upwind of the areas on the east side of the Bridgeton Landfill where excavation activities were taking place. The MSD Lift Station is adjacent to the Materialogic parking lot on Old St. Charles Rock Road just across from the Bridgeton Landfill fence line and southwest of excavation activities. The High School location was a grassy area situated on the northwest corner of the school property. The Pattonville High School is approximately 1.5 miles southwest of Bridgeton Landfill.

During sampling on Tuesday, May 21, 2013, the wind was steadily blowing from the south /south southwest (5 – 15 mph), which made the Grassy Knoll location downwind and the MSD Lift Station and High School upwind relative to Bridgeton Landfill. The odor was present at the Grassy Knoll (downwind of the active areas of Bridgeton Landfill) at the time sampling was initiated. Odors were not observed at the MSD Lift Station which was upwind on that day. However, odors were observed at the High School, throughout the May 21, 2013 sampling event, even though the High School was 1.5 miles upwind of Bridgeton Landfilland this event occurred in advance of excavation activities. A detailed assessment of sources of odor at the High School other than the Bridgeton Landfill was beyond the scope of this analysis.

At the beginning of sampling on Wednesday, May 22, 2013, the wind was blowing from the south. Winds switched to a westerly direction overnight and continued to blow out of the west until sampling ceased on Thursday, May 23, 2013. On these dates, all locations were cross-wind relative to Bridgeton Landfill. Odors were not observed at any sampling locations on these dates.

5.0 Analytical Results

5.1 RESULTS OF AMBIENT AIR SAMPLES FROM THE HIGH SCHOOL AND COMPARISON LOCATIONS

As described in Section 4.0, (shown on Figure 1), ambient air samples were collected from three locations along a vector, running from the northeast to southwest, which transects Bridgeton Landfill, Champ Sanitary Landfill and the High School. Samples collected on Tuesday, May 21, 2013 were collected prior to RCP abandonment activities and reflect ambient air conditions prior to excavation. The samples collected on Wednesday, May 22 and Thursday, May 23, 2013 were collected during active RCP excavation and reflect ambient conditions during excavation activities. Table 2 presents a summary of the analytical results for all sampling locations. Laboratory analytical reports are provided in Appendix A.

5.1.1 Analytes Not Detected in Any Sample

The following analytes were not detected in any samples of air from any sampling locations:

- Amine compounds;
- Carboxylic acid compounds;
- Reduced sulfur compounds;
- Benzo(a)pyrene and the related carcinogenic PAHs associated with incomplete combustion of organic matter, though other PAHs were identified.

5.1.2 Ammonia

Ammonia was detected at the Grassy Knoll location during RCP removal activities on May 23, 2013; during which time this location was cross-gradient from the RCP removal activities. It was not detected at any other sampling location prior to or during RCP excavation. The found concentration, 110 μ g/m³, exceeded the US Environmental Protection Agency Regional Screening Level for residential air (US EPA residential RSL) of 100 μ g/m³. The primary use of ammonia is as a nitrogen source in fertilizers, especially anhydrous ammonia and urea. Ammonia is released into the environment by many industries and other human activities. In addition, ammonia is part of the nitrogen cycle and is produced in soil from bacterial processes (decomposition).

5.1.3 Volatile Organic Compounds

No VOC or Tentatively Identified Compounds ("TIC") was found at concentrations exceeding their respective US EPA RSLs for Residential Air. Fifteen Target Analyte VOCs and eighteen TICs were found below residential standards in one or more of the locations sampled. The Target Analytes detected at below residential standards were: propene, dichlorodifluoromethane, ethanol, acetonitrile, acetone, 2-propanol (isopropyl alcohol),

methylene chloride, n-hexane, tetrahydrofuran, toluene, trichlorofluoromethane, alpha-pinene, n-butyl acetate, n-nonane and d-limonene. The TICs detected at below residential standards were: isobutene, isopentane, trimethylsilanol, n-hexanal, hexamethylcyclotrisiloxane, 6-methyl-5-heptene-2-one, n-octanal, 2-ethyl-1-hexanol, n-nonanal, 2-ethylhexylacetate, n-decanal, four unidentified siloxanes and three unidentified compounds. A greater number of compounds were detected in the sample from the Grassy Knoll on the northwest portion of the Bridgeton Landfill than were found at either off-site location (High School or MSD Lift Station) on the days of sampling. Table 2 presents the concentrations of VOCs and TICs detected in air samples from the three sampling locations along with the US EPA RSLs for Residential Air for comparison purposes. All reported concentrations of VOCs were below US EPA RSL concentrations for Residential Air.

5.1.4 Aldehydes

Three common aldehyde compounds, acetaldehyde, hexaldehyde and formaldehyde were detected at low concentrations that did not demonstrate an impact from the RCP excavation. Table 2 presents the concentrations of the individual aldehyde compounds detected in air samples from the three sampling locations along with the US EPA Residential RSLs for comparison purposes.

On May 21, 2013, prior to RCP removal activities, acetaldehyde was detected at low concentrations in all locations with concentrations ranging from 0.93 μ g/m³ at the MSD Lift Station to 1.0 μ g/m³ at the High School. On May 23, 2013, during RCP removal, acetaldehyde was again detected at all locations, concentrations ranged from 0.7 μ g/m³ at the MSD Lift Station to 3.2 μ g/m³ on the Grassy Knoll.

Formaldehyde was detected prior to RCP removal activities, May 21, 2013, in all locations and ranged from 2.4 μ g/m³ on the Grassy Knoll to 3.3 μ g/m³ at the MSD Lift Station. On May 23, 2013, during RCP removal, the formaldehyde concentration ranged from non-detect at the High School to 1.1 μ g/m³ at the MSD Lift Station.

The detected formaldehyde concentrations exceeded the US EPA RSL. Similarly, acetaldehyde concentrations slightly exceeded the US EPA RSL at the High School prior to and during RCP excavation activities and on the Grassy Knoll during excavation. However, the RSL concentrations for these compounds are conservative (close to the laboratory reporting limit). In this case, the US EPA School Air Toxics Initiative Individual Screening Levels (ISLs) are informative. None of the formaldehyde or acetaldehyde concentrations approached the School ISLs, 50 µg/m³ and 90 µg/m³, respectively.

On Tuesday, May 21, 2013, low concentrations of hexaldehyde were detected at the MSD Lift Station (0.35 μ g/m³, Detection Limit 0.34 μ g/m³) and High School (0.47 μ g/m³, Detection Limit 0.32 μ g/m³). Hexaldehyde was not detected in any sample during RCP abandonment activities on May 23, 2013. There is no published US EPA RSL or ISL for hexaldehyde.

5.1.5 Polycyclic Aromatic Hydrocarbons

High volume samples for determination of PAHs were taken from the Lift Station and the High School locations. The following five PAH compounds were detected in samples from both locations: naphthalene; acenaphthene; fluorene; phenanthrene; and fluoranthene. Where available, none of the concentrations exceeded US EPA RSLs. Benzo(a)pyrene and other related carcinogenic PAHs were not detected in any sample.

5.1.6 Dioxins/Dibenzofurans

High volume samples for determination of dioxins/dibenzofurans were also collected from the MSD Lift Station and the High School locations. Table 3 shows the concentrations of the individual polychlorinated dibenzo-p-dioxins and dibenzofuran (dioxins/dibenzofurans) isomers that were detected. Consistent with the US EPA guidance, the detected concentrations of the individual dioxins and dibenzofuran isomers were converted to 2, 3, 7, 8-TCDD TEQs. Table 2 presents the total TCDD TEQ calculated for dioxins in the sample collected at the Lift Station (7.99E-09 μ g/m³) and the High School (3.72E-09 μ g/m³). Neither detected concentration exceeds the US EPA residential RSL, 6.4E-08.

6.0 Discussion of Sampling Results

6.1 APPLICABLE PUBLIC HEALTH STANDARDS

6.1.1 Risk-Based Screening Levels

US EPA RSL concentrations for exposure in residential settings are presented on Table 2. The RSLs for carcinogenic chemicals are calculated to correspond to a lifetime cancer risk of 1 in 1,000,000 (1 in 1 million or 1E-06) for a person (receptor) who is assumed to be exposed to that concentration on an ongoing basis over an extended period of time (30 years for residential). The RSLs for non carcinogenic compounds represent concentrations that are very unlikely to produce health effects in people who are exposed over many years. While concentrations below the RSLs generally indicate that there is not a concern for public health, concentrations above RSLs do not necessarily indicate that adverse health effects will occur, only that additional evaluation may be appropriate.

In 2009, the US EPA's School Air Toxics Monitoring Initiative developed Individual Sample Screening Levels ("ISLs") to evaluate ambient air in schools. The screening levels represent inhalation exposure estimates that are unlikely to be associated with appreciable risk of adverse health effects for populations that are exposed continuously for short to intermediate durations. The ISLs consider exposures for sensitive groups such as children. Although the duration of exposure is not expressly described, the use of Acute MRLs in the development of these screening levels suggests that a 14-day exposure duration is appropriate for acute exposure benchmarks (http://www.epa.gov/schoolair/pdfs/UsesofHealthEffectsInfoinEvalSample Results.pdf).

6.1.2 Comparison to Risk-Based Screening Levels

The vast majority of detections were much lower than the residential RSL concentrations. None of the detected VOCs, PAHs or dioxins exceeded their respective residential RSLs. In addition, more VOC compounds were detected on the Grassy Knoll on the northwest portion of the Bridgeton Landfill property boundary than either off-site location (High School or MSD Lift Station), which suggests that intrusive activities to remove the RCP structures were not impacting off-site air quality on the days of sampling because the wind would have taken any chemical compounds generated on the landfill in the other direction.

The detected concentrations of formaldehyde and the majority of the acetaldehyde concentrations exceeded their respective RSLs. As indicated, the residential RSLs for formaldehyde (0.19 μ g/m³) and acetaldehyde (0.94 μ g/m³) are close to the detection levels (laboratory MRLs for these compounds in ambient air (0.32 – 0.34 μ g/m³)). No detected formaldehyde or acetaldehyde concentration approached much less exceeded the school-specific ISL, 50 μ g/m³ and 90 μ g/m³, respectively. In urban ambient air, these concentrations

Stantec PATTONVILLE HIGH SCHOOL AMBIENT AIR SAMPLING PRIOR TO AND DURING RCP REMOVAL AT BRIDGETON LANDFILL MAY 2013: SUMMARY OF FINDINGS

are fairly common because acetaldehyde and formaldehyde have a number of ubiquitous sources such as motor vehicle emissions.

Ammonia was detected at concentrations exceeding the US EPA residential RSL in one sample collected from the Grassy Knoll location during RCP excavation activities. The concentration of ammonia found on the Grassy Knoll is higher than any historical detection on the Bridgeton Landfill itself; and was not found in any other sample. The potential sources of the ammonia at this location are largely unknown, but may include anthropogenic and/or industrial sources; or it may be an anomalous result. However, it is highly unlikely that the ammonia was related to RCP removal activities.

The very low concentrations of naphthalene and related coal-tar pitch volatile PAHs, and dioxins/dibenzofurans found in the ambient air samples were below US EPA residential RSLs. The low concentrations of PAHs and dioxins are consistent with background concentrations in urban settings and are most likely related to various combustion sources including automotive emissions.

7.0 Summary and Conclusions

The purpose of the air monitoring conducted at the Pattonville High School from May 21 to May 23, 2013 was to assess whether the intrusive RCP abandonment work at the Bridgeton Landfill impacted the air quality at the High School campus. As summarized below, comprehensive sampling conducted during the last week of school demonstrated that there were no impacts to air quality at the school that could be attributed to the RCP excavation.

All detected concentrations of VOCs, PAHs and dioxins were below the corresponding conservative EPA RSLs for long-term exposure in residential air. No amine, carboxylic acid or reduced sulfur compound (including hydrogen sulfide) was detected in any sample. Acetaldehdye, formaldehyde and ammonia were present at concentrations exceeding their respective risk-based US EPA RSLs for residential exposure. However, acetaldehyde and formaldehyde concentrations were below the ISL levels set for schools (there is no ISL for ammonia). The RSLs for these compounds are very close to the detection limits. These compounds are typically found at low μ g/m³ concentrations in urban/industrial environments and have common sources such as motor vehicle exhaust. Regardless, the detected concentrations of formaldehyde and acetaldehyde were similar in magnitude regardless of location relative to Bridgeton Landfill and wind-direction, suggesting that these concentrations represent regional background levels.

Ammonia was detected above the residential RSL at the Grassy Knoll on the northwest portion of the Bridgeton Landfill property. As stated earlier, this compound has not been detected in historical ambient air sampling conducting on Bridgeton Landfill, and was not detected in any other location during this sampling event. Although this particular finding is unexplained, there are both industrial and anthropogenic sources of ammonia; or the result may be an anomaly.

The number of individual constituents and the concentrations of those constituents found at the High School were similar to what was found at the MSD Lift Station which is immediately across Old St. Charles Rock Road from the portion of the Bridgeton Landfill where RCP abandonment activities were occurring; and would represent air leaving Bridgeton Landfill and moving towards the school.

The results of the sampling conducted between May 21 and May 23, 2013 demonstrate that the ambient air at Pattonville High School was not negatively impacted by the Bridgeton Landfill excavation activities associated RCP removal. No compounds of interest were detected in ambient air at Pattonville High School at concentrations that would pose a health concern to student, staff or visitors to the school.

8.0 Tables & Figures

- Table 1. Sample collection protocols
- Table 2. Ambient Air Sampling Summary of all Detected Compounds
- Table 3. Individual polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/PCDF) isomers and conversion to 2,3,7,8-TCDD toxicity equivalents (TEQs) in ambient air

Figure1. Air Sampling Locations

9.0 Appendix A. Laboratory Analytical Reports

10.0 References

US EPA, Reference Guide to Odor Thresholds for Hazardous Air Pollutants Listed in the Clean Air Act Amendments of 1990, EPA/600/R-92/047, March 1992.

US EPA Regional Screening Levels Summary Table, May 2013 on-line.

TOXNET, Toxicology Data Network, US National Library of Medicine, Sep 2012 on-line.

ATSDR, Agency for Toxic Substances and Disease Registry, Toxic Substances Portal – Ammonia on-line.

PATTONVILLE HIGH SCHOOL AMBIENT AIR SAMPLING PRIOR TO AND DURING RCP REMOVAL AT BRIDGETON LANDFILL MAY 2013: SUMMARY OF FINDINGS

TABLES & FIGURES

Table 1

Sample collection protocols Pattonville High School Prior to and During RCP Removal at Bridgeton Landfill May 21 through May 23, 2013

Analyte group	Sample location	Analytical method	Collection method	Sample duration and flow rate	Link to methodology
Volatile organic compounds	Ambient on landfill and off landfill	EPA TO-15	6 Liter Summa canisters	240 min, 240 minute total evacuation time by regulator	http://www.epa.gov/ttnamti1/files/ambient/airtox/to- 15r.pdf
Reduced sulfur compounds	Ambient on landfill and off landfill	ASTM D5504	6 Liter Summa canisters	240 min, 240 minute total evacuation time by regulator	http://www.caslab.com/Forms- Downloads/Flyers/REDUCED_SULFUR_BROCHURE.pdf
Carboxylic acids	Ambient on landfill and off landfill	Columbia Analytical AQL Method 102	Treated silica gel sorbent tube	Low flow sampling pump; 240 min @ 0.40 lpm	http://www.caslab.com/Forms- Downloads/Flyers/CARBOXYLIC SAMPLING FLYER.pdf
Amines	Ambient on landfill and off landfill	Columbia Analytical AQL Method 101	Specially treated sorbent tube	Low flow sampling pump; 240 min @ 0.40 lpm	http://www.caslab.com/Forms- Downloads/Flyers/AMINES_METHOD_101_FLYER.pdf
Ammonia	Ambient on landfill and off landfill	OSHA ID-188	Carbon beads	Low flow sampling pump; 240 min @ 0.50 lpm	http://www.osha.gov/dts/sltc/methods/inorganic/id188 /id188.html
Aldehydes	Ambient on landfill and off landfill	EPA TO-11A	2,4-DNPH coated sorbent tube	Low flow sampling pump; 240 min @ 1.2 lpm	http://www.epa.gov/ttnamti1/files/ambient/airtox/to- 11ar.pdf
Dioxins and furans	Ambient on landfill and off landfill	EPA TO-9	High volume sample, PUF sorbent	High volume pump; 24 hours @ >200 LPM	http://www.epa.gov/ttnamti1/files/ambient/airtox/to- 9arr.pdf
Polynuclear aromatic hydrocarbons	Ambient on landfill and off landfill	ЕРА ТО-113А	High volume sample, PUF sorbent	High volume pump; 24 hours @ >200 LPM	http://www.epa.gov/ttnamti1/files/ambient/airtox/to- 13arr.pdf

	Та	able 2: Am	bient Air S	ampling Su	ummary					
Pattonvill	le High Scho	ool – Prior t	o and Duri	ing RCP Re	moval at B	ridgeton L	andfill			
		May	21 to May	y 23, 2013						
	Cond	centration i	n Ambient	: Air – All U	Inits µg/m	3				
	Screenir	ng Levels			Sample L	ocations				
Analyte	USEPA		Grassy	y Knoll	MSD Lift By Mate	t Station erialogic	Pattonville	High School		
	Air RSI s	USEPA ISLS			Sampl	e Date				
			5/21/2013	5/23/2013	5/21/2013	5/23/2013	5/21/2013	5/23/2013		
Amine Compounds – Method: CAS AQL 101										
No Compounds Detected	NA ¹	NA	²							
	Cá	arboxylic Acid	Compounds -	- Method: CA	S AQL 102					
No Compounds Detected	NA	NA								
		Reduced Si	ulfur Compou	ind – ASTM D	5504			L		
No Compounds Detected NA </td										
	Alde	ehydes/Carbor	nyl Compoun	ds – Method:	EPA TO-11a					
Formaldehyde	0.19	50	2.4 ³	0.4	3.3	1.1	2.9			
Acetaldehyde	0.94	90	0.94	3.2	0.93	0.7	1.0	1.1		
Hexaldehyde	NA	NA			0.47		0.35			
		Ammo	nia – Method	: OSHA ID 18	8					
Ammonia	10	NA		110						
	Volatile	Organic Com	oounds (VOCs	s) – Method: I	EPA TO15 + T	lCs				
Propene	NA	NA	9.4	1.0						
Dichlorodifluoromethane (CFC 12)	10	NA	2.6	2.1	2.4	2.2	2.3	2.1		
Ethanol	NA	NA	69		6.6					
Acetonitrile	6.3	600	5.4			2.3	1.2	4.0		
Acetone	3,200	62,000	25		8.6		9.7			
2-Propanol (Isopropyl Alcohol)	730	NA	31							
Methylene Chloride	63	2,000	5.0	1.0						
n-Hexane	73	NA	3.0							
Tetrahydrofuran (THF)	210	NA	4.8							

	T	able 2: Am	bient Air S	ampling Su	ummary					
Pattonvill	e High Scho	ool – Prior t	o and Duri	ng RCP Re	moval at B	ridgeton L	andfill			
		May	21 to May	y 23, 2013		2				
	Cond	centration i	n Ambient	Air – All U	Inits µg/m	.				
	Screenir	ng Levels			Sample L	ocations				
Analyte	USEPA		Grassy	y Knoll	MSD Lift By Mate	t Station erialogic	Pattonville	High School		
	Air RSI s	USEPA ISLS	Sample Date							
			5/21/2013	5/23/2013	5/21/2013	5/23/2013	5/21/2013	5/23/2013		
	Volatile Organic Compounds (VOCs) – Method: EPA TO15 + TICs (Cont.)									
Toluene 520 4,000 6.5 1.1 1.2										
Trichlorofluoromethane	73	NA		1.1	1.7	1.1	1.1	1.1		
alpha-Pinene	NA	NA			2.1					
n-Butyl Acetate	NA	NA		2.3						
n-Nonane	21	NA	5.1							
d-Limonene	NA	NA	12		0.72					
Volatile Org	anic Compoun	ds (VOCs) – Te	entatively Ide	ntified Comp	ounds - Meth	od: EPA TO15	5 + TICs ⁴			
Isobutane	NA	NA	10							
Isopentane	NA	NA	25							
Unidentified Cmpd (9.02)	NA	NA					2.6			
Trimethylsilanol	NA	NA		4.3						
n-Hexanal	NA	NA			8.9					
Hexamethylcyclotrisiloxane	NA	NA		17	6.2	16	17	2.6		
6-Methyl-5-heptene-2-one	NA	NA					2.9			
n-Octanal + Unidentified Cmpd	NA	NA	8.2							
Unidentified Cmpd (18.40)	NA	NA		25	7.9	21	15			
2-Ethyl-1-hexanol	NA	NA	24	3.3	7.1					
n-Nonanal	NA	NA	24	3.3	31	2.4	7.9	5.5		
2-Ethylhexylacetate	NA	NA	12	3.5	3.3					
Unidentified Siloxane (19.98)	NA	NA	13		11			2.8		
Unidentified Siloxane (19.99)	NA	NA		12		12	19			

Pattonvil	T le High Scho	able 2: Am	bient Air S	ampling Su	ummary moval at P	Rridgeton I	andfill	
		- Μαι Μαι	i 21 to May	v 23 2013			anann	
	Con	ivia) contration i	n Ambient	$\cdot \Delta ir = \Delta II I$	Inits ug/m	3		
		centration			mits µg/m			
	Screenir	ng Levels			Sample I	ocations		
Analyte	USEPA		Grass	y Knoll	MSD Lif By Mate	t Station erialogic	Pattonville	High School
	Residental Air RSI s	USEPA ISLS			Sampl	e Date	•	
			5/21/2013	5/23/2013	5/21/2013	5/23/2013	5/21/2013	5/23/2013
Volatile Organi	ic Compounds	(VOCs) – Tenta	atively Identi	fied Compour	nds - Method	EPA TO15 +	TICs (Cont.)	<u>.</u>
n-Decanal	NA	NA	8.6		5.8	2.6	11	
Unidentified Siloxane (21.47)	NA	NA		2.3			9.0	
Unidentified Siloxane (21.48)	NA	NA			2.5			
Unidentified Cmpd (21.96)	NA	NA	9.0					
Polynuclear Aromatic Hydrocarbons - Method: EPA TO13a Modified								
Naphthalene	0.072	30	NS ⁵	NS	NS	0.043	NS	0.021
Acenaphthene	NA	NA	NS	NS	NS	0.0017	NS	0.0036
Fluorene	NA	NA	NS	NS	NS	0.0027	NS	0.0025
Phenanthrene	NA	NA	NS	NS	NS	0.011	NS	0.0065
Fluoranthene	NA	NA	NS	NS	NS	0.0028	NS	0.0024
	Polychlorina	ated Dibenzo-	p-Dioxins, Dib	penzofurans –	EPA Method	TO-9A		1
2,3,7,8-TCDD	6.4E-08	NA	NS	NS	NS	7.99E-09	NS	3.72E-09
 "NA" = Not Available "—" = Compound not det Bold and shading indicate Screening Level for Reside The reported concentrati "NS" = Not Sampled 	ected that the found ential Air. ons for TICs ar	d concentratio re estimated	n exceeds the	e United State	s Environmen	ital Protectior	n Agency Regi	onal

	Pattonville High School - Prior to and During RCP Removal at Bridgeton Landfill May 22 to May 23, 2013 ^{1,2}											
	3		Pattor	nville High Sch	ool		Landfill	Comparison Lo	cation			
Name	TEF	Mass	TEQ ⁴	Air volume	Concentration ⁵	Mass	TEQ	Air volume	Concentration			
Units		pg ⁶	pg	Liters	ug/m ³	pg	pg	Liters	ug/m³			
2,3,7,8-TCDD	1	ND 7	ND	367,455		ND	ND	362,000				
1,2,3,7,8-PeCDD	1	ND	ND	367,455		2.51	2.51	362,000	6.93E-09			
1,2,3,4,7,8-HxCDD	0.1	1.65	0.165	367,455	4.49E-10	ND	ND	362,000				
1,2,3,6,7,8-HxCDD	0.1	1.70	0.170	367,455	4.63E-10	ND	ND	362,000				
1,2,3,7,8,9-HxCDD	0.1	ND	ND	367,455		ND	ND	362,000				
1,2,3,4,6,7,8-HpCDD	0.01	9.53	0.0953	367,455	2.59E-10	12.0	0.120	362,000	3.31E-10			
OCDD	0.0003	32.3	0.0097	367,455	2.64E-11	47.6	0.0143	362,000	3.94E-11			
2,3,7,8-TCDF	0.1	3.68	0.368	367,455	1.00E-09	ND	ND	362,000				
1,2,3,7,8-PeCDF	0.03	ND	ND	367,455		ND	ND	362,000				
2,3,4,7,8-PeCDF	0.3	ND	ND	367,455		ND	ND	362,000				
1,2,3,4,7,8-HxCDF	0.1	1.99	0.199	367,455	5.42E-10	ND	ND	362,000				
1,2,3,6,7,8-HxCDF	0.1	2.15	0.215	367,455	5.85E-10	1.66	0.166	362,000	4.59E-10			
1,2,3,7,8,9-HxCDF	0.1	ND	ND	367,455		ND	ND	362,000				
2,3,4,6,7,8-HxCDF	0.1	0.73	0.0728	367,455	1.98E-10	ND	ND	362,000				
1,2,3,4,6,7,8-HpCDF	0.01	7.12	0.0712	367,455	1.94E-10	8.21	0.0821	362,000	2.27E-10			
1,2,3,4,7,8,9-HpCDF	0.01	ND	ND	367,455		ND	ND	362,000				
OCDF	0.0003	6.40	0.00192	367,455	5.23E-12	5.55	0.00167	362,000	4.60E-12			
Total TCDD TEQ 8			1.37		3.72E-09		2.89		7.99E-09			
USEPA Residential RSL ⁹					6.4E-08				6.4E-08			

Table 3: Dioxin & Dibenzofuran Air Sampling Summary

1. Sampling was conducted between 11:00 A.M. May 22 to 11:00 A.M. May 23, 2013

2. Analytical Method: EPA TO-9a

3. TEF: 2005 World Health Organization (WHO) Toxicity Equivalence Factor

4. TEQ: TCDD Toxicity Equivalent Mass/Concentration

5. Concentration calculation: ((TEQ * Air Volume) * 1,000)/1,000,000

6. pg: Picograms

7. ND: Not Detected

8. Total TCDD TEQ: Total Tetrachlorodibenzodioxin TEQ

9. RSL: Regional Screening Level for Dioxins in Industrial Air

Air Monitoring Location Key

- A. Grassy Knoll (Landfill Location)
- B. MSD Lift Station (Off-Site Location)
- C. Pattonville High School (Off-Site Location)

Stantec Consulting Services, Inc. 1500 Lake Shore Drive, Suite 100 Columbus, Ohio 43230

Figure 1. Air Monitoring Locations Prior To And During RCP Abandonment At Bridgeton Landfill, LLC 13570 St. Charles Rock Road Bridgeton, MO 63044

Checked By: CJL	Aerial Map Provided By USGS	August 2013

PATTONVILLE HIGH SCHOOL AMBIENT AIR SAMPLING PRIOR TO DURING RCP REMOVAL AT BRIDGETON LANDFILL MAY 2013: SUMMARY OF FINDINGS

LABORATORY ANALYTICAL RESULTS

LABORATORY REPORT

May 31, 2013

Deborah Gray Stantec Consulting Services, Inc. 1500 Lake Shore Drive Suite 100 Columbus, OH 43204

RE: Bridgeton Landfill / 182608005

Dear Deborah:

Enclosed are the results of the samples submitted to our laboratory on May 23, 2013. For your reference, these analyses have been assigned our service request number P1302192.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

tha Henringsen By Samantha Henningsen at 2:29 pm, May 31, 2013

Samantha Henningsen Project Manager

Client:Stantec Consulting Services, Inc.Project:Bridgeton Landfill / 182608005

Service Request No: P1302192

CASE NARRATIVE

The samples were received intact under chain of custody on May 23, 2013 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Aldehyde Analysis

The DNPH silica gel tube samples were analyzed for aldehydes according to EPA Method TO-11A using high performance liquid chromatography (HPLC). This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

Amine Analysis

The Alumina tube samples were analyzed for amines using a gas chromatograph equipped with a nitrogen phosphorus detector (NPD). This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

Ammonia Analysis

The Anasorb 747 tube samples were prepared in accordance with OSHA ID-188 and analyzed for ammonia in air by Ion Selective Electrode per OSHA ID-164. This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

Carboxylic Acids Analysis

The Silica gel tube samples were analyzed for carboxylic acids using combined gas chromatography/mass spectrometry (GC/MS) in accordance with laboratory operating procedures. This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

Sulfur Analysis

The Silonite Canister samples were also analyzed for twenty sulfur compounds per ASTM D 5504-08 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

Client:Stantec Consulting Services, Inc.Project:Bridgeton Landfill / 182608005

Service Request No: P1302192

CASE NARRATIVE

Volatile Organic Compound Analysis

The summa canister samples were analyzed for volatile organic compounds and tentatively identified compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. The method was modified to include the use of helium as a diluent gas in place of zero-grade air for canister pressurization. When necessary, analytical sample volumes were adjusted by a correction factor for canisters pressurized with helium. A summary sheet has been included listing the affected samples. Any analytes flagged with an X are not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

The Summa canisters were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The Trip Blank (521Blank-SU) contained TICS (Trimethylsilanol and Hexamethylcyclotrisiloxane). No Target compounds with levels above the reporting limit were detected. The Trip Blank was re-run on a different position with similar results. This ensures the analytical system did not contain any residual contamination. The representativeness of a trip blank for air analyses is debatable since, following the use of any canister, it is standard laboratory procedure to clean and condition each can prior to being released for another project. Based on the results the data does not appear to be significantly affected by this anomaly. No further corrective action was appropriate.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of Columbia Analytical Services, Inc. dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

Columbia Analytical Services, Inc. dba ALS Environmental - Simi Valley

Certifications, Accreditations, and Registrations

Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L11-203
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp- services/labcert/labcert.htm	2012039
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	494864
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	CA200007
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 12-3
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01527201 2-2
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.caslab.com, www.alsqlobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client: Stantec Consulting Services, Inc. Service Request: P1302192 Bridgeton Landfill / 182608005 Project ID: Can **DSHA ID-164 Modified - Ammonia** Carbox Acids - Carboxy Acids Date Received: 5/23/2013 ASTM D5504-08 - Sulfur Time Received: 11:30 70-11A - Carbonyls FO-15 - VOC Cans Amines - Amines Date Time Container Pi1 Pf1 Client Sample ID Lab Code Collected Collected ID Matrix (psig) (psig) 521GN-SU P1302192-001 Air 5/21/2013 16:33 AS00460 -10.23 3.56 Х Х 521LF-SU Х P1302192-002 Air 5/21/2013 16:23 AS00158 -0.54 Х 3.83 5/21/2013 Х Х 521HS-SU P1302192-003 Air 15:58 AS00304 -0.52 3.65 Х Х 521BLANK-SU P1302192-004 Air 5/21/2013 14:22 AS00205 -14.42 3.54 521GN-2 ALD P1302192-005 Air 5/21/2013 19:01 Х 521GN-4 Amine P1302192-006 Air 5/21/2013 16:33 Х Х 521GN-6 NH4 P1302192-007 5/21/2013 Air 16:33 521GN-7 CARBOX P1302192-008 5/21/2013 16:33 Х Air Х 521LF-2 ALD P1302192-009 Air 5/21/2013 16:23 521LF-4 Amine P1302192-010 Air 5/21/2013 16:23 Х Х 521LF-6 NH4 P1302192-011 Air 5/21/2013 16:23 521LF-7 CARBOX 5/21/2013 16:23 P1302192-012 Air Х 521HS-2 ALD P1302192-013 Air 5/21/2013 15:58 Х 521HS-4 Amine P1302192-014 Air 5/21/2013 15:58 Х Х 521HS-6 NH4 P1302192-015 Air 5/21/2013 15:58 521HS-7 CARBOX P1302192-016 Air 5/21/2013 15:58 Х 5/21/2013 15:06 Х 521B-10 ALD P1302192-017 Air 521B-12 Amine P1302192-018 5/21/2013 15:07 Х Air Х 521B-14 NH4 P1302192-019 5/21/2013 15:08 Air 521B-15 CARBOX P1302192-020 5/21/2013 Air 15:09 Х

Air - Chain of Custody Record & Analytical Service Request

Page / of 2

	Zooo Park Center Drive, Suite A	Simi Valley, California 93065	Phone (805) 526-7161	Fax (805) 526-7270
--	---------------------------------	-------------------------------	----------------------	--------------------

۵ Requested Turnaround Time

Fax (805) 526-7270				1 Day (100%) 2 De	ut (75%) 3 Day (50°	ness Days (Surr %) 4 Dav (35%¥	5 Dav (25%) 10	circle Dav-Stands	CA	S Project N	lo. . 7 : 2: a	
Company Name 8 Add (D 1)						< ·			AS Contact		TRAT	
Company Name & Address (Reporting	Information)			Project Name								
STANTEL CONSUL	-7106			ng Ng	Dretta	Lance.			HENDIAKS	S S S		
1500 LAVE & HOR	E DE			Project Number		120 220			Analysis M	ethod		
Colow Bus or	4320	4		0	260800	١٨						
DEC COAY				P.O. # / Billing Infor	mation		a se					
Phone	Fax			()							Comments	
614486-4303	6144	86 431	5		J.W.	ę					e.g. Actual Presentativo or	
Email Address for Result Reporting				Sampler (Print & Sign)	1110	the second					Specific instructions	
dev.gray @. s'	TANTE	L. CON		CHENS LOLAN	oe 17 16 (u	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Å	e e				
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC SC etc)	Fjów Controller ID (Bar code #- EC #)	Canister Start Pressure	Canister End Pressure	Sample		* .		
521GN-50	ONA	5/21/13	16:33	45004hC	Stromad	-14.53	17.78	Noiume	V A		A B B B B B B B B B B B B B B B B B B B	
52165-50	01	5/21/13	16:23	A30121 58	681.67891	-14.25	20.79				LCS See	
05-541755 6 of	0	5/21/13	15:58	A500204	2600002	N. M.	- 0.77			2004		
521 SLANK - SV	<u>B</u>	5/21/13	27:11	A500205	NA NA	14.19	14.19	4	<u>8</u> K		CANS IN	
	65 C		¢ (POWNY ID								-
521GN-2 ALD (24:58	5/21/13	Les 1	\$ 1964	2 A	2X	NA 2	3.502	L Tas	220		
521GN-4 AMINE	Ø		R.42.5	# 2018	\$ -11-5			24 667				
521 QN -6 NWY	6		L' L'	#2017					2 C C C C C C C C C C C C C C C C C C C			
521GN -7 CARBOX	\$	See Service	12.001	#3003		GINCLE		\$, 40c	AQL 10	4		
			200									
5216-2 ALD	6	5/21/2	1000	#2016	NA	NA	NA 2	2.24	12 4 TO			
521LF - 4 AMINE	0	~	221	\$ 1018		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-#	8.330	101			
521LF-6 NHY	G		12:20 10:2	# 2015			6	0.511		Š		
SZILF-7 CARBOX	Ø		11:21	# 3002		Ц		1 000 t		200	A CONTRACTOR OF	
Tier I - Results (Default if not specified)		, ·	Tier III (Results	+ QC & Calibration Sum	marias)							
Tier II (Results + QC Summaries)			Tier IV (Data Va	lidation Package) 10% 5	Surcharge			ype:	Yes / NO	<u> 7</u>	oject Requirements IRLs, QAPP)	
Preimouleseerboy/Syghaturey	e Maria di Angele a		5/22/13	ime: 10:10	Received by: (Sigriatur	e) fram	00 20		Park Time:		CS S	
i wing an			Date:	me:	Received by: (Signatur	(a			te: Time:	<u>\3</u> ₽)	oley/Blank	
								•				

Air - Chain of Custody Record & Analytical Service Request

Page Z of Z

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

Requested Turnaround Time in Business Days (Surcharges)

Fax (805) 526-7270		1 Day (100%) 2 Da	ıy (75%) 3 Day (50%	%) 4 Day (35% 5	Day (25%) D	urue Day-Standa) 2		2 2 Car	
Company Name & Address (Reporting Information)	یون از میروند. از میروند از میروند از میروند و از م	Posto d Manage					AS Contact:			1
STANTEC CONSULTING				6 24			FEWN INK	SEN		·
ISOO LAKE SNORE DRIVE		Project Ni imber	IDCKE TON	LANDE	le h		Analysis N	lethod		
COLUMBUSI ON Y3ZOU			200800							
		P.O. # / Billing Infor	mation							
Phone Fax		N N	N. A.						Comments e.g. Actual	
Email Address for Result Renorting	16 4387								Preservative or	
debistan & STANTEC.C	Logo Contraction	Sampler (Print & Sign)	Leves /	Clark Con	•	\$		-	specific instructions	
Client Sample ID Laboratory Co	Date Time ollected Collected	Bar code # - AC, SC, etc.)	Flow Controller (D (Bar code #- FC #)	Canister Start Pressure "Ho	Canister End Pressure "Homein	Sample Volume	****			
52145-2 ALD (1) 5/	121/13 11:45:5	8 H 3006	2	\$ \$	E TX		404		an a	
521 45 - 4 Amine 0	11:48	#3004					401		na na cuinta	
SZINS-6 NHY B	21:48-58	# 2014				2 2 2	1 411×	X X A	BAAN AW LAND THE REPORT OF FREE TO THE THE PARTY IN	
52145-7 CARBOX B	1:343	E 2017			i i	3.625	AQL I		A Property of the second s	
							2 2			
521B-10 ALD 9 51	121/13 35:06	NÀ	FIELDR	LANK			L Dd		n e de la constante de la const	
521B - 12 AMINE 8	1 15:67	Q.	11				101		SALADA MANANA MANANA GANANA ANA MANANA M	
521 8 - 14 NH4 Q	15:0%		66	11						,
5213 - 15 CARBOX @			11	10	*			V 108		
	с.	Survey of the second						660		
	**************************************		8							
			A COMPANY OF THE ACCOUNTS OF T							
Report Tier Levels - please select										
Ther II (Results + OC Summaries)	Tier III (Results Tier IV (Data V	+ QC & Calibration Surr alidation Package) 10% (maries) Surcharge		ω –	EDD required	I Yes / No	Pr	oject Requirements	
Retinquistiged by (Stopparts)	Date:	Time:	Received by: (Son and	Than			¢: / Tim			
Relinquished by: (Signature)	3/22/15 Date:	Time.	Bareived hvr. (Stanatur		X	<u>86</u>	23/6-110	2		
			inverved by (algrand	(a		Da	e: Time	i Te	oler / Blank mperature°C	

Columbia Analytical Services*

Now	Sample Acceptance Che	eck Form				
Client	Stantec Consulting Services, Inc.	Work order:	P1302192			
Project	Bridgeton Landfill / 182608005					
Sample	(s) received on: 5/23/13 Date	opened: <u>5/23/13</u>	by:	MZAM	IORA	
Note: This	form is used for <u>all</u> samples received by ALS. The use of this form for custody seals is	strictly meant to indicate pres	sence/absence and n	ot as an ir	dication	of
compliance	or nonconformity. Thermal preservation and pH will only be evaluated either at the re-	quest of the client and/or as re	equired by the metho	od/SOP. <u>Yes</u>	<u>No</u>	<u>N/A</u>
1	Were sample containers properly marked with client sample ID?			X		
2	Container(s) supplied by ALS?			X		
3	Did sample containers arrive in good condition?			X		
4	Were chain-of-custody papers used and filled out?			X		
5	Did sample container labels and/or tags agree with custody papers?			X		
6	Was sample volume received adequate for analysis?			X		
7	Are samples within specified holding times?			X		
8	Was proper temperature (thermal preservation) of cooler at receipt a	adhered to?		X		
	Cooler Temperature: 5° C Blank Temperature: ° C	Gel	Packs			
9	Was a trip blank received?				X	
10	Were custody seals on outside of cooler/Box?			X		
	Location of seal(s)? Front of cooler, covering openin	g.	Sealing Lid?	X		
	Were signature and date included?			X		
	Were seals intact?			X		
	Were custody seals on outside of sample container?				X	
	Location of seal(s)?		Sealing Lid?			X
	Were signature and date included?					X
	Were seals intact?					X
11	Do containers have appropriate preservation , according to method	I/SOP or Client specified	l information?			X
	Is there a client indication that the submitted samples are pH preserv	ved?				X
	Were <u>VOA vials</u> checked for presence/absence of air bubbles?					X
	Does the client/method/SOP require that the analyst check the sample	e pH and <u>if necessary</u> alt	er it?			X
12	Tubes: Are the tubes capped and intact?			X		
	Do they contain moisture?				X	
13	Badges: Are the badges properly capped and intact?					X
	Are dual bed badges separated and individually ca	pped and intact?				X

Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
P1302192-001.01	6.0 L Silonite Can					Canister possibly leaking.
P1302192-002.01	6.0 L Silonite Can					
P1302192-003.01	6.0 L Silonite Can					
P1302192-004.01	6.0 L Silonite Can					
P1302192-005.01	Silica Gel DNPH Tube					
P1302192-006.03	Treated Alumina Tube					
P1302192-007.04	Anasorb 747 Tube					
P1302192-008.01	Silica Gel (C. Acids)					

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

ī

Work order:

Now part	of the		
----------	--------	--	--

Λ

Client: Stantec Consulting Services, Inc.

Sample Acceptance Check Form

P1302192

.

Sample(s) received on:	5/23/13	Date opened: 5/23/13				by: MZAMORA	
Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receipt / Preservation	
	Description	pH *	pH	pH	(Presence/Absence)	Comments	
P1302192-009.01	Silica Gel DNPH Tube						
P1302192-010.03	Treated Alumina Tube						
P1302192-011.04	Anasorb 747 Tube						
P1302192-012.01	Silica Gel (C. Acids)						
P1302192-013.01	Silica Gel DNPH Tube						
P1302192-014.03	Treated Alumina Tube						
P1302192-015.04	Anasorb 747 Tube						
P1302192-016.01	Silica Gel (C. Acids)						
P1302192-017.01	Silica Gel DNPH Tube						
P1302192-018.03	Treated Alumina Tube						
P1302192-019.04	Anasorb 747 Tube						
P1302192-020.01	Silica Gel (C. Acids)						

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521GN-2 ALDClient Project ID:Bridgeton Landfill / 182608005

Test Code:	EPA Method TO-11A
Instrument ID:	Agilent Infinity LC 1220/LC3
Analyst:	Lusine Hakobyan
Sample Type:	Silica Gel DNPH Tube
Test Notes:	BC

CAS Project ID: P1302192 CAS Sample ID: P1302192-005

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Desorption Volume: 1.0 ml Volume Sampled: 303.507 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		ng/Sample	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
50-00-0	Formaldehyde	740	2.4	0.33	2.0	0.27	
75-07-0	Acetaldehyde	280	0.94	0.33	0.52	0.18	
123-38-6	Propionaldehyde	< 100	ND	0.33	ND	0.14	
4170-30-3	Crotonaldehyde, Total	< 100	ND	0.33	ND	0.11	
123-72-8	Butyraldehyde	< 100	ND	0.33	ND	0.11	
100-52-7	Benzaldehyde	< 100	ND	0.33	ND	0.076	
590-86-3	Isovaleraldehyde	< 100	ND	0.33	ND	0.094	
110-62-3	Valeraldehyde	< 100	ND	0.33	ND	0.094	
529-20-4	o-Tolualdehyde	< 100	ND	0.33	ND	0.067	
620-23-5							
104-87-0	m,p-Tolualdehyde	< 200	ND	0.66	ND	0.13	
66-25-1	n-Hexaldehyde	< 100	ND	0.33	ND	0.080	
5779-94-2	2,5-Dimethylbenzaldehyde	< 100	ND	0.33	ND	0.060	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521LF-2 ALDClient Project ID:Bridgeton Landfill / 182608005

Test Code:	EPA Method TO-11A
Instrument ID:	Agilent Infinity LC 1220/LC3
Analyst:	Lusine Hakobyan
Sample Type:	Silica Gel DNPH Tube
Test Notes:	BC

CAS Project ID: P1302192 CAS Sample ID: P1302192-009

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Desorption Volume: 1.0 ml Volume Sampled: 290.279 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		ng/Sample	μg/m ³	µg∕m³	ppbV	ppbV	Qualifier
50-00-0	Formaldehyde	950	3.3	0.34	2.7	0.28	
75-07-0	Acetaldehyde	270	0.93	0.34	0.51	0.19	
123-38-6	Propionaldehyde	< 100	ND	0.34	ND	0.15	
4170-30-3	Crotonaldehyde, Total	< 100	ND	0.34	ND	0.12	
123-72-8	Butyraldehyde	< 100	ND	0.34	ND	0.12	
100-52-7	Benzaldehyde	< 100	ND	0.34	ND	0.079	
590-86-3	Isovaleraldehyde	< 100	ND	0.34	ND	0.098	
110-62-3	Valeraldehyde	< 100	ND	0.34	ND	0.098	
529-20-4	o-Tolualdehyde	< 100	ND	0.34	ND	0.070	
620-23-5							
104-87-0	m,p-Tolualdehyde	< 200	ND	0.69	ND	0.14	
66-25-1	n-Hexaldehyde	140	0.47	0.34	0.12	0.084	
5779-94-2	2,5-Dimethylbenzaldehyde	< 100	ND	0.34	ND	0.063	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521HS-2 ALDClient Project ID:Bridgeton Landfill / 182608005

Test Code:	EPA Method TO-11A
Instrument ID:	Agilent Infinity LC 1220/LC3
Analyst:	Lusine Hakobyan
Sample Type:	Silica Gel DNPH Tube
Test Notes:	BC

CAS Project ID: P1302192 CAS Sample ID: P1302192-013

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Desorption Volume: 1.0 ml Volume Sampled: 310.000 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		ng/Sample	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
50-00-0	Formaldehyde	900	2.9	0.32	2.4	0.26	
75-07-0	Acetaldehyde	310	1.0	0.32	0.56	0.18	
123-38-6	Propionaldehyde	< 100	ND	0.32	ND	0.14	
4170-30-3	Crotonaldehyde, Total	< 100	ND	0.32	ND	0.11	
123-72-8	Butyraldehyde	< 100	ND	0.32	ND	0.11	
100-52-7	Benzaldehyde	< 100	ND	0.32	ND	0.074	
590-86-3	Isovaleraldehyde	< 100	ND	0.32	ND	0.092	
110-62-3	Valeraldehyde	< 100	ND	0.32	ND	0.092	
529-20-4	o-Tolualdehyde	< 100	ND	0.32	ND	0.066	
620-23-5							
104-87-0	m,p-Tolualdehyde	< 200	ND	0.65	ND	0.13	
66-25-1	n-Hexaldehyde	110	0.35	0.32	0.085	0.079	
5779-94-2	2,5-Dimethylbenzaldehyde	< 100	ND	0.32	ND	0.059	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

CAS Project ID: P1302192

CAS Sample ID: P1302192-017

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521B-10 ALDClient Project ID:Bridgeton Landfill / 182608005

Test Code:	EPA Method TO-11A Date Collected: 5/21		
Instrument ID:	Agilent Infinity LC 1220/LC3	Date Received: 5/23/13	
Analyst:	Lusine Hakobyan	Date Analyzed: 5/28/13	
Sample Type:	Silica Gel DNPH Tube	Desorption Volume: 1.0 ml	
Test Notes:	BC	Volume Sampled: NA Liter	(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		ng/Sample	μg/m³	μg/m³	ppbV	ppbV	Qualifier
50-00-0	Formaldehyde	< 100	NA	NA	NA	NA	
75-07-0	Acetaldehyde	< 100	NA	NA	NA	NA	
123-38-6	Propionaldehyde	< 100	NA	NA	NA	NA	
4170-30-3	Crotonaldehyde, Total	< 100	NA	NA	NA	NA	
123-72-8	Butyraldehyde	< 100	NA	NA	NA	NA	
100-52-7	Benzaldehyde	< 100	NA	NA	NA	NA	
590-86-3	Isovaleraldehyde	< 100	NA	NA	NA	NA	
110-62-3	Valeraldehyde	< 100	NA	NA	NA	NA	
529-20-4	o-Tolualdehyde	< 100	NA	NA	NA	NA	
620-23-5							
104-87-0	m,p-Tolualdehyde	< 200	NA	NA	NA	NA	
66-25-1	n-Hexaldehyde	< 100	NA	NA	NA	NA	
5779-94-2	2,5-Dimethylbenzaldehyde	< 100	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

NA = Not applicable.

.

CAS Project ID: P1302192 CAS Sample ID: P130528-MB

> 1.0 ml NA Liter(s)

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	Method Blank
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	EPA Method TO-11A	Date Collected: NA			
Instrument ID:	Agilent Infinity LC 1220/LC3	Date Received: NA			
Analyst:	Lusine Hakobyan	Date Analyzed: 05/28/13			
Sample Type:	Silica Gel DNPH Tube	Desorption Volume: 1.0			
Test Notes:	BC	Volume Sampled: NA			

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		ng/Sample	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
50-00-0	Formaldehyde	< 100	NA	NA	NA	NA	
75-07-0	Acetaldehyde	< 100	NA	NA	NA	NA	
123-38-6	Propionaldehyde	< 100	NA	NA	NA	NA	
4170-30-3	Crotonaldehyde, Total	< 100	NA	NA	NA	NA	
123-72-8	Butyraldehyde	< 100	NA	NA	NA	NA	
100-52-7	Benzaldehyde	< 100	NA	NA	NA	NA	
590-86-3	Isovaleraldehyde	< 100	NA	NA	NA	NA	
110-62-3	Valeraldehyde	< 100	NA	NA	NA	NA	
529-20-4	o-Tolualdehyde	< 100	NA	NA	NA	NA	
620-23-5							
104-87-0	m,p-Tolualdehyde	< 200	NA	NA	NA	NA	
66-25-1	n-Hexaldehyde	< 100	NA	NA	NA	NA	
5779-94-2	2,5-Dimethylbenzaldehyde	< 100	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

NA = Not applicable.

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521GN-4 AmineClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	BC, DE

CAS Project ID: P1302192 CAS Sample ID: P1302192-006

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/24/13 Desorption Volume: 2.0 ml Volume Sampled: 84.662 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
124-40-3	Dimethylamine	< 0.53	ND	6.2	ND	3.4	
75-04-7	Ethylamine	< 0.55	ND	6.5	ND	3.5	
75-50-3	Trimethylamine	< 0.52	ND	6.1	ND	2.5	
75-31-0	Isopropylamine	< 0.52	ND	6.2	ND	2.6	
75-64-9	tert-Butylamine	< 1.1	ND	12	ND	4.1	
107-10-8	n-Propylamine	< 0.55	ND	6.5	ND	2.7	
109-89-7	Diethylamine	< 0.52	ND	6.1	ND	2.0	
13952-84-6	sec-Butylamine	< 0.53	ND	6.2	ND	2.1	
78-81-9	Isobutylamine	< 0.54	ND	6.4	ND	2.1	
109-73-9	n-Butylamine	< 0.53	ND	6.3	ND	2.1	
108-18-9	Diisopropylamine	< 0.51	ND	6.0	ND	1.5	
121-44-8	Triethylamine	< 0.51	ND	6.1	ND	1.5	
142-84-7	Dipropylamine	< 0.52	ND	6.1	ND	1.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521LF-4 AmineClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	BC, DE

CAS Project ID: P1302192 CAS Sample ID: P1302192-010

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/24/13 Desorption Volume: 2.0 ml Volume Sampled: 88.330 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		μg/Tube	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
124-40-3	Dimethylamine	< 0.53	ND	6.0	ND	3.2	
75-04-7	Ethylamine	< 0.55	ND	6.2	ND	3.4	
75-50-3	Trimethylamine	< 0.52	ND	5.9	ND	2.4	
75-31-0	Isopropylamine	< 0.52	ND	5.9	ND	2.5	
75-64-9	tert-Butylamine	< 1.1	ND	12	ND	4.0	
107-10-8	n-Propylamine	< 0.55	ND	6.2	ND	2.6	
109-89-7	Diethylamine	< 0.52	ND	5.8	ND	2.0	
13952-84-6	sec-Butylamine	< 0.53	ND	6.0	ND	2.0	
78-81-9	Isobutylamine	< 0.54	ND	6.1	ND	2.0	
109-73-9	n-Butylamine	< 0.53	ND	6.0	ND	2.0	
108-18-9	Diisopropylamine	< 0.51	ND	5.8	ND	1.4	
121-44-8	Triethylamine	< 0.51	ND	5.8	ND	1.4	
142-84-7	Dipropylamine	< 0.52	ND	5.8	ND	1.4	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521HS-4 AmineClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	BC, DE

CAS Project ID: P1302192 CAS Sample ID: P1302192-014

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/24/13 Desorption Volume: 2.0 ml Volume Sampled: 60.500 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
124-40-3	Dimethylamine	< 0.53	ND	8.7	ND	4.7	
75-04-7	Ethylamine	< 0.55	ND	9.1	ND	4.9	
75-50-3	Trimethylamine	< 0.52	ND	8.5	ND	3.5	
75-31-0	Isopropylamine	< 0.52	ND	8.7	ND	3.6	
75-64-9	tert-Butylamine	< 1.1	ND	17	ND	5.8	
107-10-8	n-Propylamine	< 0.55	ND	9.1	ND	3.8	
109-89-7	Diethylamine	< 0.52	ND	8.5	ND	2.8	
13952-84-6	sec-Butylamine	< 0.53	ND	8.7	ND	2.9	
78-81-9	Isobutylamine	< 0.54	ND	8.9	ND	3.0	
109-73-9	n-Butylamine	< 0.53	ND	8.8	ND	3.0	
108-18-9	Diisopropylamine	< 0.51	ND	8.4	ND	2.0	
121-44-8	Triethylamine	< 0.51	ND	8.5	ND	2.0	
142-84-7	Dipropylamine	< 0.52	ND	8.5	ND	2.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521B-12 AmineClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	BC, DE

CAS Project ID: P1302192 CAS Sample ID: P1302192-018

Date Collected:	5/21/13
Date Received:	5/23/13
Date Analyzed:	5/24/13
Desorption Volume:	2.0 ml
Volume Sampled:	NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		μg/Tube	μg/m³	μg/m³	ppbV	ppbV	Qualifier
124-40-3	Dimethylamine	< 0.53	NA	NA	NA	NA	
75-04-7	Ethylamine	< 0.55	NA	NA	NA	NA	
75-50-3	Trimethylamine	< 0.52	NA	NA	NA	NA	
75-31-0	Isopropylamine	< 0.52	NA	NA	NA	NA	
75-64-9	tert-Butylamine	< 1.1	NA	NA	NA	NA	
107-10-8	n-Propylamine	< 0.55	NA	NA	NA	NA	
109-89-7	Diethylamine	< 0.52	NA	NA	NA	NA	
13952-84-6	sec-Butylamine	< 0.53	NA	NA	NA	NA	
78-81-9	Isobutylamine	< 0.54	NA	NA	NA	NA	
109-73-9	n-Butylamine	< 0.53	NA	NA	NA	NA	
108-18-9	Diisopropylamine	< 0.51	NA	NA	NA	NA	
121-44-8	Triethylamine	< 0.51	NA	NA	NA	NA	
142-84-7	Dipropylamine	< 0.52	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

NA = Not applicable.

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:Method BlankClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	BC. DE

CAS Project ID: P1302192 CAS Sample ID: P130524-MB

Date Collected: NA Date Received: NA Date Analyzed: 5/24/13 Desorption Volume: 2.0 ml Volume Sampled: NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	μg/m³	ppbV	ppbV	Qualifier
124-40-3	Dimethylamine	< 0.53	NA	NA	NA	NA	
75-04-7	Ethylamine	< 0.55	NA	NA	NA	NA	
75-50-3	Trimethylamine	< 0.52	NA	NA	NA	NA	
75-31-0	Isopropylamine	< 0.52	NA	NA	NA	NA	
75-64-9	tert-Butylamine	< 1.1	NA	NA	NA	NA	
107-10-8	n-Propylamine	< 0.55	NA	NA	NA	NA	
109-89-7	Diethylamine	< 0.52	NA	NA	NA	NA	
13952-84-6	sec-Butylamine	< 0.53	NA	NA	NA	NA	
78-81-9	Isobutylamine	< 0.54	NA	NA	NA	NA	
109-73-9	n-Butylamine	< 0.53	NA	NA	NA	NA	
108-18-9	Diisopropylamine	< 0.51	NA	NA	NA	NA	
121-44-8	Triethylamine	< 0.51	NA	NA	NA	NA	
142-84-7	Dipropylamine	< 0.52	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. NA = Not applicable.

BC = Results reported are not blank corrected.

Now part of the ALS Group

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	Duplicate Lab Control Sample
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	

CAS Project ID: P1302192 CAS Sample ID: P130524-DLCS

Date Collected: NA Date Received: NA Date Analyzed: 5/24/13 Volume(s) Analyzed: NA Liter(s)

		Spike Amount	Result				CAS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		μg/ml	µg/ml	µg/ml	LCS	DLCS	Limits		Limit	Qualifier
124-40-3	Dimethylamine	9.63	8.59	9.27	89	96	57-129	8	19	
75-04-7	Ethylamine	10.1	8.74	9.15	87	91	52-127	4	18	
75-50-3	Trimethylamine	10.8	9.53	10.7	88	99	44-139	12	35	
75-31-0	Isopropylamine	10.7	9.83	10.4	92	97	64-127	5	16	
75-64-9	tert-Butylamine	10.5	9.80	9.75	93	93	65-129	0	20	
107-10-8	n-Propylamine	13.0	11.0	11.3	85	87	57-127	2	14	
109-89-7	Diethylamine	11.1	10.4	10.7	94	96	65-128	2	16	
13952-84-6	sec-Butylamine	11.1	10.5	10.4	95	94	68-125	1	14	
78-81-9	Isobutylamine	11.2	10.4	10.2	93	91	65-125	2	15	
109-73-9	n-Butylamine	10.7	10.5	9.36	98	87	68-123	12	16	
108-18-9	Diisopropylamine	10.4	10.4	10.5	100	101	63-128	1	17	
121-44-8	Triethylamine	10.9	9.99	10.7	92	98	65-125	6	19	
142-84-7	Dipropylamine	10.4	10.3	10.0	99	96	70-125	3	14	

RESULTS OF ANALYSIS Page 1 of 1

Client: Stan Client Project ID: Bridg

Stantec Consulting Services, Inc. Bridgeton Landfill / 182608005

CAS Project ID: P1302192

.

Ammonia

Test Code:	OSHA ID-188/ID-164	Date(s) Collected: 5/21/13
Instrument ID:	PH01/Thermo Orion 920A+/Ammonia ISE	Date Received: 5/23/13
Analyst:	Sue Anderson	Date Analyzed: 5/30/13
Sampling Media:	Anasorb 747 Tube(s) (Sulfuric Treated)	Desorption Volume: 0.10 Liter(s)
Test Notes:	BC, DE	

Client Sample ID	CAS Sample ID	Sample Volume	Dilution	Result	Result	MRL	Result	MRL	Data
_	_	Liter(s)	Factor	mg/Tube	mg/m³	mg/m³	ppmV	ppmV	Qualifier
521GN-6 NH4	P1302192-007	121.506	1.0	< 0.011	ND	0.088	ND	0.13	
521LF-6 NH4	P1302192-011	120.516	1.0	< 0.011	ND	0.089	ND	0.13	
521HS-6 NH4	P1302192-015	124.750	1.0	< 0.011	ND	0.086	ND	0.12	
521B-14 NH4	P1302192-019	NA	1.0	< 0.011	NA	NA	NA	NA	
Method Blank	P130530-MB	NA	1.0	< 0.011	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

NA = Not applicable.

BC = Results reported are not blank corrected.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.	
Client Sample ID:	Duplicate Lab Control Sample	CAS Project ID: P1302192
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P130530-LCS,
		P130530-DLCS

.

Laboratory Control Sample/Duplicate Laboratory Control Sample Summary

Test Code:	OSHA ID-188/ID-164	Date Sampled: N/A
Instrument ID:	PH01/Thermo Orion 920A+/Ammonia ISE	Date Received: N/A
Analyst:	Sue Anderson	Date Analyzed: 5/30/13
Sampling Media:	Anasorb 747 Tube(s) (Sulfuric Treated)	Volume(s) Analyzed: N/A
Test Notes:		

	Spike Amount	Re	sult	% Re	covery	CAS	Relative		
Compound	LCS / DLCS	LCS	DLCS	LCS	DLCS	Acceptance	Percent	RPD	Data
	mg/L	mg/L	mg/L			Limits	Difference	Limit	Qualifier
Ammonia	1.00	1.07	1.05	107	105	80-109	2	4	

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521GN-7 CARBOXClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/MS
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Analyst:	Evelyn Ibarra
Sampling Media:	Silica Gel Tube
Test Notes:	BC. DE

CAS Project ID: P1302192 CAS Sample ID: P1302192-008

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/29/13 Desorption Volume: 1.0 ml Volume Sampled: 98.406 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
64-19-7	Acetic Acid	< 2.0	ND	20	ND	8.2	
79-09-4	Propionic Acid (Propanoic)	< 0.24	ND	2.5	ND	0.81	
79-31-2	2-Methylpropanoic Acid (Isobutyric)	< 0.25	ND	2.5	ND	0.69	
107-92-6	Butanoic Acid (Butyric)	< 0.24	ND	2.5	ND	0.68	
116-53-0	2-Methylbutanoic Acid	< 0.24	ND	2.5	ND	0.59	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	< 0.25	ND	2.5	ND	0.60	
109-52-4	Pentanoic Acid (Valeric)	< 0.25	ND	2.5	ND	0.60	
97-61-0	2-Methylpentanoic Acid	< 0.24	ND	2.4	ND	0.51	
105-43-1	3-Methylpentanoic Acid	< 0.25	ND	2.5	ND	0.53	
646-07-1	4-Methylpentanoic Acid (Isocaproic)	< 0.24	ND	2.5	ND	0.52	
142-62-1	Hexanoic Acid (Caproic)	< 0.25	ND	2.5	ND	0.53	
111-14-8	Heptanoic Acid (Enanthoic)	< 0.24	ND	2.5	ND	0.46	
149-57-5	2-Ethylhexanoic Acid	< 0.25	ND	2.5	ND	0.42	
98-89-5	Cyclohexanecarboxylic Acid	< 0.24	ND	2.5	ND	0.47	
124-07-2	Octanoic Acid (Caprylic)	< 0.24	ND	2.4	ND	0.41	
65-85-0	Benzoic Acid	< 0.26	ND	2.6	ND	0.52	
112-05-0	Nonanoic Acid (Pelargonic)	< 0.25	ND	2.5	ND	0.39	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521LF-7 CARBOXClient Project ID:Bridgeton Landfill / 182608005

Test Notes:	BC, DE
Sampling Media:	Silica Gel Tube
Analyst:	Evelyn Ibarra
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Test Code:	GC/MS

CAS Project ID: P1302192 CAS Sample ID: P1302192-012

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/29/13 Desorption Volume: 1.0 ml Volume Sampled: 97.889 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	µg/m³	ppbV	ppbV	Qualifier
64-19-7	Acetic Acid	< 2.0	ND	20	ND	8.2	
79-09-4	Propionic Acid (Propanoic)	< 0.24	ND	2.5	ND	0.82	
79-31-2	2-Methylpropanoic Acid (Isobutyric)	< 0.25	ND	2.5	ND	0.70	
107-92-6	Butanoic Acid (Butyric)	< 0.24	ND	2.5	ND	0.69	
116-53-0	2-Methylbutanoic Acid	< 0.24	ND	2.5	ND	0.59	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	< 0.25	ND	2.5	ND	0.60	
109-52-4	Pentanoic Acid (Valeric)	< 0.25	ND	2.5	ND	0.61	
97-61-0	2-Methylpentanoic Acid	< 0.24	ND	2.5	ND	0.52	
105-43-1	3-Methylpentanoic Acid	< 0.25	ND	2.5	ND	0.53	
646-07-1	4-Methylpentanoic Acid (Isocaproic)	< 0.24	ND	2.5	ND	0.52	
142-62-1	Hexanoic Acid (Caproic)	< 0.25	ND	2.5	ND	0.53	
111-14-8	Heptanoic Acid (Enanthoic)	< 0.24	ND	2.5	ND	0.47	
149-57-5	2-Ethylhexanoic Acid	< 0.25	ND	2.5	ND	0.42	
98-89-5	Cyclohexanecarboxylic Acid	< 0.24	ND	2.5	ND	0.47	
124-07-2	Octanoic Acid (Caprylic)	< 0.24	ND	2.5	ND	0.42	
65-85-0	Benzoic Acid	< 0.26	ND	2.6	ND	0.52	
112-05-0	Nonanoic Acid (Pelargonic)	< 0.25	ND	2.5	ND	0.39	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521HS-7 CARBOXClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/MS
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Analyst:	Evelyn Ibarra
Sampling Media:	Silica Gel Tube
Test Notes:	BC. DE

CAS Project ID: P1302192 CAS Sample ID: P1302192-016

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/29/13 Desorption Volume: 1.0 ml Volume Sampled: 113.625 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
64-19-7	Acetic Acid	< 2.0	ND	17	ND	7.1	
79-09-4	Propionic Acid (Propanoic)	< 0.24	ND	2.1	ND	0.71	
79-31-2	2-Methylpropanoic Acid (Isobutyric)	< 0.25	ND	2.2	ND	0.60	
107-92-6	Butanoic Acid (Butyric)	< 0.24	ND	2.1	ND	0.59	
116-53-0	2-Methylbutanoic Acid	< 0.24	ND	2.1	ND	0.51	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	< 0.25	ND	2.2	ND	0.52	
109-52-4	Pentanoic Acid (Valeric)	< 0.25	ND	2.2	ND	0.52	
97-61-0	2-Methylpentanoic Acid	< 0.24	ND	2.1	ND	0.45	
105-43-1	3-Methylpentanoic Acid	< 0.25	ND	2.2	ND	0.46	
646-07-1	4-Methylpentanoic Acid (Isocaproic)	< 0.24	ND	2.1	ND	0.45	
142-62-1	Hexanoic Acid (Caproic)	< 0.25	ND	2.2	ND	0.46	
111-14-8	Heptanoic Acid (Enanthoic)	< 0.24	ND	2.1	ND	0.40	
149-57-5	2-Ethylhexanoic Acid	< 0.25	ND	2.2	ND	0.37	
98-89-5	Cyclohexanecarboxylic Acid	< 0.24	ND	2.1	ND	0.41	
124-07-2	Octanoic Acid (Caprylic)	< 0.24	ND	2.1	ND	0.36	
65-85-0	Benzoic Acid	< 0.26	ND	2.2	ND	0.45	
112-05-0	Nonanoic Acid (Pelargonic)	< 0.25	ND	2.2	ND	0.34	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:521B-15 CARBOXClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/MS
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Analyst:	Evelyn Ibarra
Sampling Media:	Silica Gel Tube
Test Notes:	BC. DE

CAS Project ID: P1302192 CAS Sample ID: P1302192-020

Date Collected:	5/21/13
Date Received:	5/23/13
Date Analyzed:	5/29 - 5/30/13
Desorption Volume:	1.0 ml
Volume Sampled:	NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
64-19-7	Acetic Acid	< 2.0	NA	NA	NA	NA	
79-09-4	Propionic Acid (Propanoic)	< 0.24	NA	NA	NA	NA	
79-31-2	2-Methylpropanoic Acid (Isobutyric)	< 0.25	NA	NA	NA	NA	
107-92-6	Butanoic Acid (Butyric)	< 0.24	NA	NA	NA	NA	
116-53-0	2-Methylbutanoic Acid	< 0.24	NA	NA	NA	NA	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	< 0.25	NA	NA	NA	NA	
109-52-4	Pentanoic Acid (Valeric)	< 0.25	NA	NA	NA	NA	
97-61-0	2-Methylpentanoic Acid	< 0.24	NA	NA	NA	NA	
105-43-1	3-Methylpentanoic Acid	< 0.25	NA	NA	NA	NA	
646-07-1	4-Methylpentanoic Acid (Isocaproic)	< 0.24	NA	NA	NA	NA	
142-62-1	Hexanoic Acid (Caproic)	< 0.25	NA	NA	NA	NA	
111-14-8	Heptanoic Acid (Enanthoic)	< 0.24	NA	NA	NA	NA	
149-57-5	2-Ethylhexanoic Acid	< 0.25	NA	NA	NA	NA	
98-89-5	Cyclohexanecarboxylic Acid	< 0.24	NA	NA	NA	NA	
124-07-2	Octanoic Acid (Caprylic)	< 0.24	NA	NA	NA	NA	
65-85-0	Benzoic Acid	< 0.26	NA	NA	NA	NA	
112-05-0	Nonanoic Acid (Pelargonic)	< 0.25	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

NA = Not applicable.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:Method BlankClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/MS
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Analyst:	Evelyn Ibarra
Sampling Media:	Silica Gel Tube
Test Notes:	BC, DE

CAS Project ID: P1302192 CAS Sample ID: P130529-MB

Date Collected: NA Date Received: NA Date Analyzed: 5/29/13 Desorption Volume: 1.0 ml Volume Sampled: NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
64-19-7	Acetic Acid	< 2.0	NA	NA	NA	NA	
79-09-4	Propionic Acid (Propanoic)	< 0.24	NA	NA	NA	NA	
79-31-2	2-Methylpropanoic Acid (Isobutyric)	< 0.25	NA	NA	NA	NA	
107-92-6	Butanoic Acid (Butyric)	< 0.24	NA	NA	NA	NA	
116-53-0	2-Methylbutanoic Acid	< 0.24	NA	NA	NA	NA	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	< 0.25	NA	NA	NA	NA	
109-52-4	Pentanoic Acid (Valeric)	< 0.25	NA	NA	NA	NA	
97-61-0	2-Methylpentanoic Acid	< 0.24	NA	NA	NA	NA	
105-43-1	3-Methylpentanoic Acid	< 0.25	NA	NA	NA	NA	
646-07-1	4-Methylpentanoic Acid (Isocaproic)	< 0.24	NA	NA	NA	NA	
142-62-1	Hexanoic Acid (Caproic)	< 0.25	NA	NA	NA	NA	
111-14-8	Heptanoic Acid (Enanthoic)	< 0.24	NA	NA	NA	NA	
149-57-5	2-Ethylhexanoic Acid	< 0.25	NA	NA	NA	NA	
98-89-5	Cyclohexanecarboxylic Acid	< 0.24	NA	NA	NA	NA	
124-07-2	Octanoic Acid (Caprylic)	< 0.24	NA	NA	NA	NA	
65-85-0	Benzoic Acid	< 0.26	NA	NA	NA	NA	
112-05-0	Nonanoic Acid (Pelargonic)	< 0.25	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. NA = Not applicable.

BC = Results reported are not blank corrected.

Now part of the ALS Group

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	Duplicate Lab Control Sample
Client Project ID:	Bridgeton Landfill / 182608005
5	8

Test Code:	GC/MS
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Analyst:	Evelyn Ibarra
Sampling Media:	Silica Gel Tube
Test Notes:	

CAS Project ID: P1302192 CAS Sample ID: P130529-DLCS

Date Collected: NA Date Received: NA Date Analyzed: 5/29/13 Volume(s) Analyzed: NA Liter(s)

		Spike Amount	Re	sult			CAS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		µg/ml	µg/ml	µg/ml	LCS	DLCS	Limits		Limit	Qualifier
64-19-7	Acetic Acid	22.6	21.5	21.6	95	96	66-135	1	26	
79-09-4	Propionic Acid (Propanoic)	10.7	10.8	10.3	101	96	76-126	5	14	
79-31-2	2-Methylpropanoic Acid (Isobutyric)) 11.2	11.5	10.8	103	96	84-118	7	13	
107-92-6	Butanoic Acid (Butyric)	10.8	10.8	10.2	100	94	85-117	6	11	
116-53-0	2-Methylbutanoic Acid	10.4	10.7	10.2	103	98	87-116	5	11	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	11.3	11.1	11.0	98	97	88-114	1	10	
109-52-4	Pentanoic Acid (Valeric)	10.5	10.4	10.1	99	96	89-113	3	11	
97-61-0	2-Methylpentanoic Acid	10.8	11.1	10.6	103	98	88-113	5	10	
105-43-1	3-Methylpentanoic Acid	10.9	11.1	10.5	102	96	88-113	6	10	
646-07-1	4-Methylpentanoic Acid (Isocaproic)) 10.8	10.9	10.3	101	95	89-113	6	11	
142-62-1	Hexanoic Acid (Caproic)	10.9	10.6	10.3	97	94	87-114	3	11	
111-14-8	Heptanoic Acid (Enanthoic)	8.95	9.21	9.16	103	102	84-116	1	10	
149-57-5	2-Ethylhexanoic Acid	8.14	8.27	7.92	102	97	82-111	5	12	
98-89-5	Cyclohexanecarboxylic Acid	6.93	7.09	7.00	102	101	85-115	1	10	
124-07-2	Octanoic Acid (Caprylic)	8.65	8.70	8.78	101	102	84-116	1	11	
65-85-0	Benzoic Acid	8.17	8.38	7.76	103	95	72-109	8	13	
112-05-0	Nonanoic Acid (Pelargonic)	8.82	8.61	8.52	98	97	84-116	1	10	

RESULTS OF ANALYSIS

.

Page 1 of 1

Client:	Stantec Consulting Services, Inc.					
Client Sample ID:	521GN-SU		CAS Project ID: P13	302192		
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P1302192-001				
Test Code:	ASTM D 5504-08		Date Collected: 5/2	1/13		
Instrument ID:	Agilent 7890A/GC22/SCD		Time Collected: 16:	33		
Analyst:	Jennifer Young		Date Received: 5/22	3/13		
Sample Type:	6.0 L Summa Canister		Date Analyzed: 5/2	8/13		
Test Notes:			Time Analyzed: 15:	27		
Container ID:	AS00460		Volume(s) Analyzed:	1.0 ml(s)		
	Initial Pressure (psig): -10.23	Final Pressure (psig):	3.56			

Canister Dilution Factor: 4.09

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	28	ND	20	
463-58-1	Carbonyl Sulfide	ND	50	ND	20	
74-93-1	Methyl Mercaptan	ND	40	ND	20	
75-08-1	Ethyl Mercaptan	ND	52	ND	20	
75-18-3	Dimethyl Sulfide	ND	52	ND	20	
75-15-0	Carbon Disulfide	ND	32	ND	10	
75-33-2	Isopropyl Mercaptan	ND	64	ND	20	
75-66-1	tert-Butyl Mercaptan	ND	75	ND	20	
107-03-9	n-Propyl Mercaptan	ND	64	ND	20	
624-89-5	Ethyl Methyl Sulfide	ND	64	ND	20	
110-02-1	Thiophene	ND	70	ND	20	
513-44-0	Isobutyl Mercaptan	ND	75	ND	20	
352-93-2	Diethyl Sulfide	ND	75	ND	20	
109-79-5	n-Butyl Mercaptan	ND	75	ND	20	
624-92-0	Dimethyl Disulfide	ND	39	ND	10	
616-44-4	3-Methylthiophene	ND	82	ND	20	
110-01-0	Tetrahydrothiophene	ND	74	ND	20	
638-02-8	2,5-Dimethylthiophene	ND	94	ND	20	
872-55-9	2-Ethylthiophene	ND	94	ND	20	
110-81-6	Diethyl Disulfide	ND	51	ND	10	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.	
Client Sample ID:	521LF-SU	CAS Project ID: P1302192
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P1302192-002
Test Code:	ASTM D 5504-08	Date Collected: 5/21/13
Instrument ID:	Agilent 7890A/GC22/SCD	Time Collected: 16:23
Analyst:	Jennifer Young	Date Received: 5/23/13
Sample Type:	6.0 L Summa Canister	Date Analyzed: 5/28/13
Test Notes:		Time Analyzed: 15:51
Container ID:	AS00158	Volume(s) Analyzed: 1.0 ml(s)

Initial Pressure (psig): -0.54

.

Final Pressure (psig): 3.83

Canister Dilution Factor: 1.31

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	µg/m³	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	9.1	ND	6.6	
463-58-1	Carbonyl Sulfide	ND	16	ND	6.6	
74-93-1	Methyl Mercaptan	ND	13	ND	6.6	
75-08-1	Ethyl Mercaptan	ND	17	ND	6.6	
75-18-3	Dimethyl Sulfide	ND	17	ND	6.6	
75-15-0	Carbon Disulfide	ND	10	ND	3.3	
75-33-2	Isopropyl Mercaptan	ND	20	ND	6.6	
75-66-1	tert-Butyl Mercaptan	ND	24	ND	6.6	
107-03-9	n-Propyl Mercaptan	ND	20	ND	6.6	
624-89-5	Ethyl Methyl Sulfide	ND	20	ND	6.6	
110-02-1	Thiophene	ND	23	ND	6.6	
513-44-0	Isobutyl Mercaptan	ND	24	ND	6.6	
352-93-2	Diethyl Sulfide	ND	24	ND	6.6	
109-79-5	n-Butyl Mercaptan	ND	24	ND	6.6	
624-92-0	Dimethyl Disulfide	ND	13	ND	3.3	
616-44-4	3-Methylthiophene	ND	26	ND	6.6	
110-01-0	Tetrahydrothiophene	ND	24	ND	6.6	
638-02-8	2,5-Dimethylthiophene	ND	30	ND	6.6	
872-55-9	2-Ethylthiophene	ND	30	ND	6.6	
110-81-6	Diethyl Disulfide	ND	16	ND	3.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

.

Page 1 of 1

Client:	Stantec Consulting Services, Inc.			
Client Sample ID:	521HS-SU		CAS Project ID: P13	02192
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P1302192-003		
Test Code:	ASTM D 5504-08		Date Collected: 5/2	1/13
Instrument ID:	Agilent 7890A/GC22/SCD	Time Collected: 15::	Time Collected: 15:58	
Analyst:	Jennifer Young		Date Received: 5/2.	3/13
Sample Type:	6.0 L Summa Canister		Date Analyzed: 5/28	8/13
Test Notes:			Time Analyzed: 16:	27
Container ID:	AS00304		Volume(s) Analyzed:	1.0 ml(s)
	Initial Pressure (psig): -0.52	Final Pressure (psig):	3.65	

Canister Dilution Factor: 1.29

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	9.0	ND	6.5	
463-58-1	Carbonyl Sulfide	ND	16	ND	6.5	
74-93-1	Methyl Mercaptan	ND	13	ND	6.5	
75-08-1	Ethyl Mercaptan	ND	16	ND	6.5	
75-18-3	Dimethyl Sulfide	ND	16	ND	6.5	
75-15-0	Carbon Disulfide	ND	10	ND	3.2	
75-33-2	Isopropyl Mercaptan	ND	20	ND	6.5	
75-66-1	tert-Butyl Mercaptan	ND	24	ND	6.5	
107-03-9	n-Propyl Mercaptan	ND	20	ND	6.5	
624-89-5	Ethyl Methyl Sulfide	ND	20	ND	6.5	
110-02-1	Thiophene	ND	22	ND	6.5	
513-44-0	Isobutyl Mercaptan	ND	24	ND	6.5	
352-93-2	Diethyl Sulfide	ND	24	ND	6.5	
109-79-5	n-Butyl Mercaptan	ND	24	ND	6.5	
624-92-0	Dimethyl Disulfide	ND	12	ND	3.2	
616-44-4	3-Methylthiophene	ND	26	ND	6.5	
110-01-0	Tetrahydrothiophene	ND	23	ND	6.5	
638-02-8	2,5-Dimethylthiophene	ND	30	ND	6.5	
872-55-9	2-Ethylthiophene	ND	30	ND	6.5	
110-81-6	Diethyl Disulfide	ND	16	ND	3.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	521BLANK-SU
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	ASTM D 5504-08
Instrument ID:	Agilent 7890A/GC22/SCD
Analyst:	Jennifer Young
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00205

CAS Project ID: P1302192 CAS Sample ID: P1302192-004

Date Collected: 5/21/13 Time Collected: 14:22 Date Received: 5/23/13 Date Analyzed: 5/28/13 Time Analyzed: 15:04 Volume(s) Analyzed: 1.0 ml(s)

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m ³	MRL µg/m ³	Result ppbV	MRL ppbV	Data Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	Method Blank
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	ASTM D 5504-08
Instrument ID:	Agilent 7890A/GC22/SCD
Analyst:	Jennifer Young
Sample Type:	6.0 L Summa Canister
Test Notes:	

CAS Project ID: P1302192 CAS Sample ID: P130528-MB

Date Collected: NA Time Collected: NA Date Received: NA Date Analyzed: 5/28/13 Time Analyzed: 14:42 Volume(s) Analyzed: 1.0 ml(s)

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	µg/m³	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	Lab Control Sample
Client Project ID:	Bridgeton Landfill / 182608005

CAS Project ID: P1302192 CAS Sample ID: P130528-LCS

Test Code:	ASTM D 5504-08	Date Collected: NA		
Instrument ID:	Agilent 7890A/GC22/SCD	Date Received: NA		
Analyst:	Jennifer Young	Date Analyzed: 5/28/13		
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	NA ml(s)	
Test Notes:				

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppbV	ppbV		Limits	Qualifier
7783-06-4	Hydrogen Sulfide	2,050	2,650	129	63-140	
463-58-1	Carbonyl Sulfide	2,020	2,520	125	63-138	
74-93-1	Methyl Mercaptan	1,890	2,420	128	63-144	

Page 1 of 4

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	521GN-SU
Client Project ID:	Bridgeton Landfill / 182608005
Test Code:	EPA TO-15 Modified
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00460

CAS Project ID: P1302192 CAS Sample ID: P1302192-001

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -10.23

Final Pressure (psig): 3.56

Canister Dilution Factor: 4.09

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	9.4	2.0	5.5	1.2	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.6	2.0	0.52	0.41	
74-87-3	Chloromethane	ND	2.0	ND	0.99	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	2.0	ND	0.29	
75-01-4	Vinyl Chloride	ND	2.0	ND	0.80	
106-99-0	1,3-Butadiene	ND	2.0	ND	0.92	
74-83-9	Bromomethane	ND	2.0	ND	0.53	
75-00-3	Chloroethane	ND	2.0	ND	0.78	
64-17-5	Ethanol	69	20	37	11	
75-05-8	Acetonitrile	5.4	2.0	3.2	1.2	
107-02-8	Acrolein	ND	8.2	ND	3.6	
67-64-1	Acetone	25	20	10	8.6	
75-69-4	Trichlorofluoromethane	ND	2.0	ND	0.36	
67-63-0	2-Propanol (Isopropyl Alcohol)	31	20	13	8.3	
107-13-1	Acrylonitrile	ND	2.0	ND	0.94	
75-35-4	1,1-Dichloroethene	ND	2.0	ND	0.52	
75-09-2	Methylene Chloride	5.0	2.0	1.4	0.59	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	2.0	ND	0.65	
76-13-1	Trichlorotrifluoroethane	ND	2.0	ND	0.27	
75-15-0	Carbon Disulfide	ND	20	ND	6.6	
156-60-5	trans-1,2-Dichloroethene	ND	2.0	ND	0.52	
75-34-3	1,1-Dichloroethane	ND	2.0	ND	0.51	
1634-04-4	Methyl tert-Butyl Ether	ND	2.0	ND	0.57	
108-05-4	Vinyl Acetate	ND	20	ND	5.8	
78-93-3	2-Butanone (MEK)	ND	20	ND	6.9	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 2 of 4

Client: Client Sample ID:	Stantec Consulting Services, Inc. 521GN-SU
Client Project ID:	Bridgeton Landfill / 182608005
Test Code:	EPA TO-15 Modified
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00460

CAS Project ID: P1302192 CAS Sample ID: P1302192-001

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -10.23

Final Pressure (psig): 3.56

Canister Dilution Factor: 4.09

CAS #	Compound	Result µg/m ³	MRL µg/m ³	Result ppbV	MRL ppbV	Data Oualifier
156-59-2	cis-1,2-Dichloroethene	ND	2.0	ND	0.52	
141-78-6	Ethyl Acetate	ND	4.1	ND	1.1	
110-54-3	n-Hexane	3.0	2.0	0.84	0.58	
67-66-3	Chloroform	ND	2.0	ND	0.42	
109-99-9	Tetrahydrofuran (THF)	4.8	2.0	1.6	0.69	
107-06-2	1,2-Dichloroethane	ND	2.0	ND	0.51	
71-55-6	1,1,1-Trichloroethane	ND	2.0	ND	0.37	
71-43-2	Benzene	ND	2.0	ND	0.64	
56-23-5	Carbon Tetrachloride	ND	2.0	ND	0.33	
110-82-7	Cyclohexane	ND	4.1	ND	1.2	
78-87-5	1,2-Dichloropropane	ND	2.0	ND	0.44	
75-27-4	Bromodichloromethane	ND	2.0	ND	0.31	
79-01-6	Trichloroethene	ND	2.0	ND	0.38	
123-91-1	1,4-Dioxane	ND	2.0	ND	0.57	
80-62-6	Methyl Methacrylate	ND	4.1	ND	1.0	
142-82-5	n-Heptane	ND	2.0	ND	0.50	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	ND	0.45	
108-10-1	4-Methyl-2-pentanone	ND	2.0	ND	0.50	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	ND	0.45	
79-00-5	1,1,2-Trichloroethane	ND	2.0	ND	0.37	
108-88-3	Toluene	6.5	2.0	1.7	0.54	
591-78-6	2-Hexanone	ND	2.0	ND	0.50	
124-48-1	Dibromochloromethane	ND	2.0	ND	0.24	
106-93-4	1,2-Dibromoethane	ND	2.0	ND	0.27	
123-86-4	n-Butyl Acetate	ND	2.0	ND	0.43	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 4

Client:Stantec Consulting Services, Inc.Client Sample ID:521GN-SUClient Project ID:Bridgeton Landfill / 182608005Test Code:EPA TO-15 ModifiedInstrument ID:Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9Analyst:John RiceSample Type:6.0 L Summa CanisterTest Notes:Container ID:AS00460

CAS Project ID: P1302192 CAS Sample ID: P1302192-001

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -10.23

Final Pressure (psig): 3.56

Canister Dilution Factor: 4.09

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m ³	μg/m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	2.0	ND	0.44	
127-18-4	Tetrachloroethene	ND	2.0	ND	0.30	
108-90-7	Chlorobenzene	ND	2.0	ND	0.44	
100-41-4	Ethylbenzene	ND	2.0	ND	0.47	
179601-23-1	m,p-Xylenes	ND	4.1	ND	0.94	
75-25-2	Bromoform	ND	2.0	ND	0.20	
100-42-5	Styrene	ND	2.0	ND	0.48	
95-47-6	o-Xylene	ND	2.0	ND	0.47	
111-84-2	n-Nonane	5.1	2.0	0.98	0.39	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	ND	0.30	
98-82-8	Cumene	ND	2.0	ND	0.42	
80-56-8	alpha-Pinene	ND	2.0	ND	0.37	
103-65-1	n-Propylbenzene	ND	2.0	ND	0.42	
622-96-8	4-Ethyltoluene	ND	2.0	ND	0.42	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	ND	0.42	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	ND	0.42	
100-44-7	Benzyl Chloride	ND	2.0	ND	0.40	
541-73-1	1,3-Dichlorobenzene	ND	2.0	ND	0.34	
106-46-7	1,4-Dichlorobenzene	ND	2.0	ND	0.34	
95-50-1	1,2-Dichlorobenzene	ND	2.0	ND	0.34	
5989-27-5	d-Limonene	12	2.0	2.2	0.37	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	ND	0.21	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	ND	0.28	
91-20-3	Naphthalene	ND	2.0	ND	0.39	
87-68-3	Hexachlorobutadiene	ND	2.0	ND	0.19	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 4 of 4

Client:	Stantec Consulting Services, Inc.		
Client Sample ID:	521GN-SU	CAS Project ID: P13	302192
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P1302192-001	
	Tentatively Identified Compound	ls	
Test Code:	EPA TO-15 Modified	Date Collected: 5/2	1/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 5/23/13	
Analyst:	John Rice	Date Analyzed: 5/28/13	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:	Т		
Container ID:	AS00460		

Initial Pressure (psig): -10.23

Final Pressure (psig): 3.56

Canister Dilution Factor: 4.09

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m ³	Qualifier
4.60	Isobutane	10	
6.82	Isopentane	25	
18.39	n-Octanal + Unidentifed Compound	8.2	
18.71	2-Ethyl-1-hexanol	24	
19.46	n-Nonanal	24	
19.86	2-Ethylhexylacetate	12	
19.98	Unidentified Siloxane	13	
20.38	n-Decanal	8.6	
21.96	Unidentified Compound	9.0	

T = Analyte is a tentatively identified compound, result is estimated.

Page 1	of 4
--------	------

Client: Client Sample ID: Client Project ID:	Stantec Consulting Services, Inc. 521LF-SU Bridgeton Landfill / 182608005
Test Code:	EPA TO-15 Modified
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00158

CAS Project ID: P1302192 CAS Sample ID: P1302192-002

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -0.54

Final Pressure (psig): 3.83

Canister Dilution Factor: 1.31

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	0.66	ND	0.38	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.4	0.66	0.48	0.13	
74-87-3	Chloromethane	ND	0.66	ND	0.32	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.66	ND	0.094	
75-01-4	Vinyl Chloride	ND	0.66	ND	0.26	
106-99-0	1,3-Butadiene	ND	0.66	ND	0.30	
74-83-9	Bromomethane	ND	0.66	ND	0.17	
75-00-3	Chloroethane	ND	0.66	ND	0.25	
64-17-5	Ethanol	6.6	6.6	3.5	3.5	
75-05-8	Acetonitrile	ND	0.66	ND	0.39	
107-02-8	Acrolein	ND	2.6	ND	1.1	
67-64-1	Acetone	8.6	6.6	3.6	2.8	
75-69-4	Trichlorofluoromethane	1.7	0.66	0.31	0.12	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	6.6	ND	2.7	
107-13-1	Acrylonitrile	ND	0.66	ND	0.30	
75-35-4	1,1-Dichloroethene	ND	0.66	ND	0.17	
75-09-2	Methylene Chloride	ND	0.66	ND	0.19	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.66	ND	0.21	
76-13-1	Trichlorotrifluoroethane	ND	0.66	ND	0.086	
75-15-0	Carbon Disulfide	ND	6.6	ND	2.1	
156-60-5	trans-1,2-Dichloroethene	ND	0.66	ND	0.17	
75-34-3	1,1-Dichloroethane	ND	0.66	ND	0.16	
1634-04-4	Methyl tert-Butyl Ether	ND	0.66	ND	0.18	
108-05-4	Vinyl Acetate	ND	6.6	ND	1.9	
78-93-3	2-Butanone (MEK)	ND	6.6	ND	2.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 2 of 4

Client: Client Sample ID:	Stantec Consulting Services, Inc. 521LF-SU
Client Project ID:	Bridgeton Landfill / 182608005
Test Code:	EPA TO-15 Modified
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00158

CAS Project ID: P1302192 CAS Sample ID: P1302192-002

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -0.54

Final Pressure (psig): 3.83

Canister Dilution Factor: 1.31

CAS #	Compound	Result	MRL	Result ppbV	MRL ppbV	Data Oualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.66	ND	0.17	Quuinor
141-78-6	Ethyl Acetate	ND	1.3	ND	0.36	
110-54-3	n-Hexane	ND	0.66	ND	0.19	
67-66-3	Chloroform	ND	0.66	ND	0.13	
109-99-9	Tetrahydrofuran (THF)	ND	0.66	ND	0.22	
107-06-2	1,2-Dichloroethane	ND	0.66	ND	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.66	ND	0.12	
71-43-2	Benzene	ND	0.66	ND	0.21	
56-23-5	Carbon Tetrachloride	ND	0.66	ND	0.10	
110-82-7	Cyclohexane	ND	1.3	ND	0.38	
78-87-5	1,2-Dichloropropane	ND	0.66	ND	0.14	
75-27-4	Bromodichloromethane	ND	0.66	ND	0.098	
79-01-6	Trichloroethene	ND	0.66	ND	0.12	
123-91-1	1,4-Dioxane	ND	0.66	ND	0.18	
80-62-6	Methyl Methacrylate	ND	1.3	ND	0.32	
142-82-5	n-Heptane	ND	0.66	ND	0.16	
10061-01-5	cis-1,3-Dichloropropene	ND	0.66	ND	0.14	
108-10-1	4-Methyl-2-pentanone	ND	0.66	ND	0.16	
10061-02-6	trans-1,3-Dichloropropene	ND	0.66	ND	0.14	
79-00-5	1,1,2-Trichloroethane	ND	0.66	ND	0.12	
108-88-3	Toluene	ND	0.66	ND	0.17	
591-78-6	2-Hexanone	ND	0.66	ND	0.16	
124-48-1	Dibromochloromethane	ND	0.66	ND	0.077	
106-93-4	1,2-Dibromoethane	ND	0.66	ND	0.085	
123-86-4	n-Butyl Acetate	ND	0.66	ND	0.14	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 4

Client:Stantec Consulting Services, Inc.Client Sample ID:521LF-SUClient Project ID:Bridgeton Landfill / 182608005Test Code:EPA TO-15 ModifiedInstrument ID:Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9Analyst:John RiceSample Type:6.0 L Summa CanisterTest Notes:Container ID:AS00158

CAS Project ID: P1302192 CAS Sample ID: P1302192-002

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -0.54

Final Pressure (psig): 3.83

Canister Dilution Factor: 1.31

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.66	ND	0.14	
127-18-4	Tetrachloroethene	ND	0.66	ND	0.097	
108-90-7	Chlorobenzene	ND	0.66	ND	0.14	
100-41-4	Ethylbenzene	ND	0.66	ND	0.15	
179601-23-1	m,p-Xylenes	ND	1.3	ND	0.30	
75-25-2	Bromoform	ND	0.66	ND	0.063	
100-42-5	Styrene	ND	0.66	ND	0.15	
95-47-6	o-Xylene	ND	0.66	ND	0.15	
111-84-2	n-Nonane	ND	0.66	ND	0.12	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.66	ND	0.095	
98-82-8	Cumene	ND	0.66	ND	0.13	
80-56-8	alpha-Pinene	2.1	0.66	0.38	0.12	
103-65-1	n-Propylbenzene	ND	0.66	ND	0.13	
622-96-8	4-Ethyltoluene	ND	0.66	ND	0.13	
108-67-8	1,3,5-Trimethylbenzene	ND	0.66	ND	0.13	
95-63-6	1,2,4-Trimethylbenzene	ND	0.66	ND	0.13	
100-44-7	Benzyl Chloride	ND	0.66	ND	0.13	
541-73-1	1,3-Dichlorobenzene	ND	0.66	ND	0.11	
106-46-7	1,4-Dichlorobenzene	ND	0.66	ND	0.11	
95-50-1	1,2-Dichlorobenzene	ND	0.66	ND	0.11	
5989-27-5	d-Limonene	0.72	0.66	0.13	0.12	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.66	ND	0.068	
120-82-1	1,2,4-Trichlorobenzene	ND	0.66	ND	0.088	
91-20-3	Naphthalene	ND	0.66	ND	0.13	
87-68-3	Hexachlorobutadiene	ND	0.66	ND	0.061	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 4 of 4

Client:	Stantec Consulting Services, Inc.					
Client Sample ID:	521LF-SU	CAS Project ID: P1	302192			
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P1302192-002				
Tentatively Identified Compounds						
Test Code:	EPA TO-15 Modified	Date Collected: 5/21/13				
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 5/23/13				
Analyst:	John Rice	Date Analyzed: 5/2	28/13			
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)			
Test Notes:	Т					
Container ID:	AS00158					

-0.54

Initial Pressure (psig):

Final Pressure (psig): 3.83

Canister Dilution Factor: 1.31

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m ³	Qualifier
15.39	n-Hexanal	8.9	
16.08	Hexamethylcyclotrisiloxane	6.2	
18.40	Unidentified Compound	7.9	
18.71	2-Ethyl-1-hexanol	7.1	
19.46	n-Nonanal	31	
19.86	2-Ethylhexylacetate	3.3	
19.98	Unidentified Siloxane	11	
20.38	n-Decanal	5.8	
21.48	Unidentified Siloxane	2.5	

T = Analyte is a tentatively identified compound, result is estimated.

Page 1 of 4

Client: Client Sample ID:	Stantec Consulting Services, Inc. 521HS-SU
Client Project ID:	Bridgeton Landfill / 182608005
Test Code:	EPA TO-15 Modified
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00304

CAS Project ID: P1302192 CAS Sample ID: P1302192-003

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -0.52

Final Pressure (psig): 3.65

Canister Dilution Factor: 1.29

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	0.65	ND	0.37	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.3	0.65	0.47	0.13	
74-87-3	Chloromethane	ND	0.65	ND	0.31	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.65	ND	0.092	
75-01-4	Vinyl Chloride	ND	0.65	ND	0.25	
106-99-0	1,3-Butadiene	ND	0.65	ND	0.29	
74-83-9	Bromomethane	ND	0.65	ND	0.17	
75-00-3	Chloroethane	ND	0.65	ND	0.24	
64-17-5	Ethanol	ND	6.5	ND	3.4	
75-05-8	Acetonitrile	1.2	0.65	0.71	0.38	
107-02-8	Acrolein	ND	2.6	ND	1.1	
67-64-1	Acetone	9.7	6.5	4.1	2.7	
75-69-4	Trichlorofluoromethane	1.1	0.65	0.20	0.11	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	6.5	ND	2.6	
107-13-1	Acrylonitrile	ND	0.65	ND	0.30	
75-35-4	1,1-Dichloroethene	ND	0.65	ND	0.16	
75-09-2	Methylene Chloride	ND	0.65	ND	0.19	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.65	ND	0.21	
76-13-1	Trichlorotrifluoroethane	ND	0.65	ND	0.084	
75-15-0	Carbon Disulfide	ND	6.5	ND	2.1	
156-60-5	trans-1,2-Dichloroethene	ND	0.65	ND	0.16	
75-34-3	1,1-Dichloroethane	ND	0.65	ND	0.16	
1634-04-4	Methyl tert-Butyl Ether	ND	0.65	ND	0.18	
108-05-4	Vinyl Acetate	ND	6.5	ND	1.8	
78-93-3	2-Butanone (MEK)	ND	6.5	ND	2.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Client: Client Sample ID:	Stantec Consulting Services, Inc. 521HS-SU Bridgeten Landfill (182608005
Client Project ID:	Bridgeton Landini / 182608005
Test Code:	EPA TO-15 Modified
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00304

CAS Project ID: P1302192 CAS Sample ID: P1302192-003

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -0.52

Final Pressure (psig): 3.65

Canister Dilution Factor: 1.29

CAS #	Compound	Result	MRL	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.65	ND	0.16	<u> </u>
141-78-6	Ethyl Acetate	ND	1.3	ND	0.36	
110-54-3	n-Hexane	ND	0.65	ND	0.18	
67-66-3	Chloroform	ND	0.65	ND	0.13	
109-99-9	Tetrahydrofuran (THF)	ND	0.65	ND	0.22	
107-06-2	1,2-Dichloroethane	ND	0.65	ND	0.16	
71-55-6	1,1,1-Trichloroethane	ND	0.65	ND	0.12	
71-43-2	Benzene	ND	0.65	ND	0.20	
56-23-5	Carbon Tetrachloride	ND	0.65	ND	0.10	
110-82-7	Cyclohexane	ND	1.3	ND	0.37	
78-87-5	1,2-Dichloropropane	ND	0.65	ND	0.14	
75-27-4	Bromodichloromethane	ND	0.65	ND	0.096	
79-01-6	Trichloroethene	ND	0.65	ND	0.12	
123-91-1	1,4-Dioxane	ND	0.65	ND	0.18	
80-62-6	Methyl Methacrylate	ND	1.3	ND	0.32	
142-82-5	n-Heptane	ND	0.65	ND	0.16	
10061-01-5	cis-1,3-Dichloropropene	ND	0.65	ND	0.14	
108-10-1	4-Methyl-2-pentanone	ND	0.65	ND	0.16	
10061-02-6	trans-1,3-Dichloropropene	ND	0.65	ND	0.14	
79-00-5	1,1,2-Trichloroethane	ND	0.65	ND	0.12	
108-88-3	Toluene	ND	0.65	ND	0.17	
591-78-6	2-Hexanone	ND	0.65	ND	0.16	
124-48-1	Dibromochloromethane	ND	0.65	ND	0.076	
106-93-4	1,2-Dibromoethane	ND	0.65	ND	0.084	
123-86-4	n-Butyl Acetate	ND	0.65	ND	0.14	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 4

Client:Stantec Consulting Services, Inc.Client Sample ID:521HS-SUClient Project ID:Bridgeton Landfill / 182608005Test Code:EPA TO-15 ModifiedInstrument ID:Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9Analyst:John RiceSample Type:6.0 L Summa CanisterTest Notes:Container ID:AS00304

CAS Project ID: P1302192 CAS Sample ID: P1302192-003

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -0.52

Final Pressure (psig): 3.65

Canister Dilution Factor: 1.29

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.65	ND	0.14	
127-18-4	Tetrachloroethene	ND	0.65	ND	0.095	
108-90-7	Chlorobenzene	ND	0.65	ND	0.14	
100-41-4	Ethylbenzene	ND	0.65	ND	0.15	
179601-23-1	m,p-Xylenes	ND	1.3	ND	0.30	
75-25-2	Bromoform	ND	0.65	ND	0.062	
100-42-5	Styrene	ND	0.65	ND	0.15	
95-47-6	o-Xylene	ND	0.65	ND	0.15	
111-84-2	n-Nonane	ND	0.65	ND	0.12	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.65	ND	0.094	
98-82-8	Cumene	ND	0.65	ND	0.13	
80-56-8	alpha-Pinene	ND	0.65	ND	0.12	
103-65-1	n-Propylbenzene	ND	0.65	ND	0.13	
622-96-8	4-Ethyltoluene	ND	0.65	ND	0.13	
108-67-8	1,3,5-Trimethylbenzene	ND	0.65	ND	0.13	
95-63-6	1,2,4-Trimethylbenzene	ND	0.65	ND	0.13	
100-44-7	Benzyl Chloride	ND	0.65	ND	0.12	
541-73-1	1,3-Dichlorobenzene	ND	0.65	ND	0.11	
106-46-7	1,4-Dichlorobenzene	ND	0.65	ND	0.11	
95-50-1	1,2-Dichlorobenzene	ND	0.65	ND	0.11	
5989-27-5	d-Limonene	ND	0.65	ND	0.12	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.65	ND	0.067	
120-82-1	1,2,4-Trichlorobenzene	ND	0.65	ND	0.087	
91-20-3	Naphthalene	ND	0.65	ND	0.12	
87-68-3	Hexachlorobutadiene	ND	0.65	ND	0.060	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

- - - -

RESULTS OF ANALYSIS

Page 4 of 4

Client:	Stantec Consulting Services, Inc.		
Client Sample ID:	521HS-SU	CAS Project ID: P1	302192
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P1302192-003	
	Tentatively Identified Compoun	ds	
Test Code:	EPA TO-15 Modified	Date Collected: 5/21/13	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 5/23/13	
Analyst:	John Rice	Date Analyzed: 5/28/13	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:	Т		
Container ID:	AS00304		

Initial Pressure (psig): -0.52

Final Pressure (psig): 3.65

Canister Dilution Factor: 1.29

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m ³	Qualifier
9.02	Unidentified Compound	2.6	
16.08	Hexamethylcyclotrisiloxane	17	
18.16	6-Methyl-5-heptene-2-one	2.9	
18.40	Unidentified Compound	15	
19.46	n-Nonanal	7.9	
19.99	Unidentified Siloxane	19	
20.38	n-Decanal	11	
21.47	Unidentified Siloxane	9.0	

T = Analyte is a tentatively identified compound, result is estimated.

Client:Stantec Consulting Services, Inc.Client Sample ID:521BLANK-SUClient Project ID:Bridgeton Landfill / 182608005Test Code:EPA TO-15 ModifiedInstrument ID:Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9Analyst:John RiceSample Type:6.0 L Summa CanisterTest Notes:Container ID:AS00205

CAS Project ID: P1302192 CAS Sample ID: P1302192-004

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.50	ND	0.20	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	5.0	ND	2.0	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 2 of 4	
-------------	--

Client:Stantec Consulting Services, Inc.Client Sample ID:521BLANK-SUClient Project ID:Bridgeton Landfill / 182608005Test Code:EPA TO-15 ModifiedInstrument ID:Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9Analyst:John RiceSample Type:6.0 L Summa CanisterTest Notes:

Container ID: AS00205

CAS Project ID: P1302192 CAS Sample ID: P1302192-004

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.50	ND	0.080	
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.50	ND	0.093	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page	3 (of	4
------	-----	----	---

Client:Stantec Consulting Services, Inc.Client Sample ID:521BLANK-SUClient Project ID:Bridgeton Landfill / 182608005

Test Code:	EPA TO-15 Modified
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00205

CAS Project ID: P1302192 CAS Sample ID: P1302192-004

Date Collected: 5/21/13 Date Received: 5/23/13 Date Analyzed: 5/28/13 Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 4 of 4

Client:	Stantec Consulting Services, Inc.		
Client Sample ID:	521BLANK-SU	CAS Project ID: P	1302192
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P1302192-004	
	Tentatively Identified Compounds	5	
Test Code:	EPA TO-15 Modified	Date Collected: 5	/21/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 5/23/13	
Analyst:	John Rice	Date Analyzed: 5	/28/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:	Т		
Container ID:	AS00205		

Canister Dilution Factor: 1.00

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m³	Qualifier
9.65	Trimethylsilanol	5.3	
16.08	Hexamethylcyclotrisiloxane	3.5	

T = Analyte is a tentatively identified compound, result is estimated.

.

RESULTS OF ANALYSIS

Page 1 of 4

Client:	Stantec Consulting Services, Inc.		
Client Sample ID:	Method Blank	CAS Project ID: P13	02192
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P130528-MB	
Test Code:	EPA TO-15 Modified	Date Collected: NA	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA	
Analyst:	John Rice	Date Analyzed: 5/28	3/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL ug/m ³	Result ppbV	MRL ppbV	Data Oualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.50	ND	0.20	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	5.0	ND	2.0	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 2 of 4

Client:	Stantec Consulting Services, Inc.			
Client Sample ID:	Method Blank	CAS Project ID: P1302192		
Client Project ID: Bridgeton Landfill / 182608005		CAS Sample ID: P130528-MB		
Test Code:	EPA TO-15 Modified	Date Collected: NA		
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA		
Analyst:	John Rice	Date Analyzed: 5/28/13		
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter	r(s)	
Test Notes:				

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	μg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.50	ND	0.080	
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.50	ND	0.093	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 4

Client:	Stantec Consulting Services, Inc.	CAS Project ID: P13021	92
Client Sample ID:	Method Blank	CAS Sample ID: P13052	8-MB
Client Project ID:	Bridgeton Landfill / 182608005		
Test Code:	EPA TO-15 Modified	Date Collected: NA	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA	
Analyst:	John Rice	Date Analyzed: 5/28/13	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.0	00 Liter(s)
Test Notes:			

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 4 of 4

Client:	Stantec Consulting Services, Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1302192
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P130528-MB
	Tentatively Identified Con	npounds
Test Code:	EPA TO-15 Modified	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA
Analyst:	John Rice	Date Analyzed: 5/28/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

Canister Dilution Factor: 1.00

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m ³	Qualifier
	No Compounds Detected		

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Project ID:	Bridgeton Landfill / 182608005

CAS Project ID: P1302192

Test Code:	EPA TO-15 Modified
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister(s)
Test Notes:	

Date(s) Collected: 5/21/13 Date(s) Received: 5/23/13 Date(s) Analyzed: 5/28/13

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	CAS Sample ID	Percent	Percent	Percent	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P130528-MB	98	102	107	70-130	
Lab Control Sample	P130528-LCS	97	99	107	70-130	
521GN-SU	P1302192-001	98	99	105	70-130	
521LF-SU	P1302192-002	99	100	102	70-130	
521HS-SU	P1302192-003	100	98	102	70-130	
521BLANK-SU	P1302192-004	97	99	104	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

Client:	Stantec Consulting Services, Inc.			
Client Sample ID:	Lab Control Sample	CAS Project ID: P	1302192	
Client Project ID: Bridgeton Landfill / 182608005		CAS Sample ID: P130528-LCS		
Test Code:	EPA TO-15 Modified	Date Collected: N	A	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA		
Analyst:	John Rice	Date Analyzed: 5/	/28/13	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	0.125 Liter(s)	
Test Notes:				

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		μg/m³	μg/m³		Limits	Qualifier
115-07-1	Propene	204	216	106	58-139	
75-71-8	Dichlorodifluoromethane (CFC 12)	202	188	93	63-115	
74-87-3	Chloromethane	196	175	89	58-122	
76 14 2	1,2-Dichloro-1,1,2,2-			02	<i>CE</i> 115	
/0-14-2	tetrafluoroethane (CFC 114)	206	190	92	05-115	
75-01-4	Vinyl Chloride	200	180	90	64-122	
106-99-0	1,3-Butadiene	210	193	92	57-141	
74-83-9	Bromomethane	200	178	89	68-122	
75-00-3	Chloroethane	202	182	90	66-120	
64-17-5	Ethanol	958	810	85	58-126	
75-05-8	Acetonitrile	202	182	90	64-136	
107-02-8	Acrolein	204	194	95	58-129	
67-64-1	Acetone	1,040	901	87	60-114	
75-69-4	Trichlorofluoromethane	210	181	86	62-107	
67-63-0	2-Propanol (Isopropyl Alcohol)	396	328	83	54-118	
107-13-1	Acrylonitrile	206	202	98	72-143	
75-35-4	1,1-Dichloroethene	218	208	95	69-119	
75-09-2	Methylene Chloride	212	169	80	64-113	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	214	206	96	59-131	
76-13-1	Trichlorotrifluoroethane	212	205	97	69-117	
75-15-0	Carbon Disulfide	208	182	88	65-115	
156-60-5	trans-1,2-Dichloroethene	202	194	96	70-126	
75-34-3	1,1-Dichloroethane	206	197	96	68-116	
1634-04-4	Methyl tert-Butyl Ether	204	204	100	69-120	
108-05-4	Vinyl Acetate	988	938	95	58-160	
78-93-3	2-Butanone (MEK)	212	205	97	70-127	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

Client:	Stantec Consulting Services, Inc.	
Client Sample ID:	Lab Control Sample	CAS Project ID: P1302192
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P130528-LCS
Test Code:	EPA TO-15 Modified	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA
Analyst:	John Rice	Date Analyzed: 5/28/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
156-59-2	cis-1,2-Dichloroethene	214	207	97	70-119	
141-78-6	Ethyl Acetate	412	391	95	72-129	
110-54-3	n-Hexane	206	195	95	63-115	
67-66-3	Chloroform	222	202	91	68-110	
109-99-9	Tetrahydrofuran (THF)	208	187	90	60-126	
107-06-2	1,2-Dichloroethane	208	196	94	69-118	
71-55-6	1,1,1-Trichloroethane	204	196	96	68-120	
71-43-2	Benzene	208	174	84	69-117	
56-23-5	Carbon Tetrachloride	212	217	102	65-134	
110-82-7	Cyclohexane	402	383	95	69-114	
78-87-5	1,2-Dichloropropane	204	199	98	70-116	
75-27-4	Bromodichloromethane	204	204	100	71-126	
79-01-6	Trichloroethene	198	198	100	71-119	
123-91-1	1,4-Dioxane	206	224	109	72-126	
80-62-6	Methyl Methacrylate	414	421	102	75-136	
142-82-5	n-Heptane	202	196	97	70-117	
10061-01-5	cis-1,3-Dichloropropene	196	221	113	75-132	
108-10-1	4-Methyl-2-pentanone	210	199	95	70-133	
10061-02-6	trans-1,3-Dichloropropene	218	219	100	78-136	
79-00-5	1,1,2-Trichloroethane	202	198	98	72-119	
108-88-3	Toluene	208	196	94	65-116	
591-78-6	2-Hexanone	228	228	100	62-132	
124-48-1	Dibromochloromethane	216	229	106	66-140	
106-93-4	1,2-Dibromoethane	208	226	109	69-130	
123-86-4	n-Butyl Acetate	228	213	93	63-136	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

Client:	Stantec Consulting Services, Inc.		
Client Sample ID:	Lab Control Sample	CAS Project ID: P	1302192
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P	130528-LCS
Test Code:	EPA TO-15 Modified	Date Collected: N	A
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: N	ΙA
Analyst:	John Rice	Date Analyzed: 5	/28/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	0.125 Liter(s)
Test Notes:			

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		µg/m³	μg/m³		Limits	Qualifier
111-65-9	n-Octane	206	197	96	66-118	
127-18-4	Tetrachloroethene	190	186	98	63-123	
108-90-7	Chlorobenzene	208	200	96	66-118	
100-41-4	Ethylbenzene	206	202	98	66-119	
179601-23-1	m,p-Xylenes	412	395	96	64-118	
75-25-2	Bromoform	216	226	105	64-140	
100-42-5	Styrene	208	234	113	68-132	
95-47-6	o-Xylene	200	193	97	65-120	
111-84-2	n-Nonane	202	196	97	64-117	
79-34-5	1,1,2,2-Tetrachloroethane	198	193	97	63-128	
98-82-8	Cumene	196	193	98	65-121	
80-56-8	alpha-Pinene	192	192	100	66-123	
103-65-1	n-Propylbenzene	198	199	101	65-121	
622-96-8	4-Ethyltoluene	204	209	102	64-122	
108-67-8	1,3,5-Trimethylbenzene	208	200	96	64-125	
95-63-6	1,2,4-Trimethylbenzene	200	207	104	64-131	
100-44-7	Benzyl Chloride	206	195	95	67-146	
541-73-1	1,3-Dichlorobenzene	206	210	102	64-130	
106-46-7	1,4-Dichlorobenzene	212	203	96	61-124	
95-50-1	1,2-Dichlorobenzene	204	198	97	63-126	
5989-27-5	d-Limonene	206	231	112	62-133	
96-12-8	1,2-Dibromo-3-chloropropane	202	226	112	62-155	
120-82-1	1,2,4-Trichlorobenzene	200	209	105	59-146	
91-20-3	Naphthalene	178	184	103	56-143	
87-68-3	Hexachlorobutadiene	208	203	98	58-133	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY REPORT

June 3, 2013

Deborah Gray Stantec Consulting Services, Inc. 1500 Lake Shore Drive Suite 100 Columbus, OH 43204

RE: Bridgeton Landfill / 182608005

Dear Deborah:

Enclosed are the results of the samples submitted to our laboratory on May 24, 2013. For your reference, these analyses have been assigned our service request number P1302212.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

tha Henringsen

By Samantha Henningsen at 3:55 pm, Jun 03, 2013 Samantha Henningsen Project Manager

Client:Stantec Consulting Services, Inc.Project:Bridgeton Landfill / 182608005

Service Request No: P1302212

CASE NARRATIVE

The samples were received intact under chain of custody on May 24, 2013 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Aldehyde Analysis

The DNPH silica gel tube samples were analyzed for aldehydes according to EPA Method TO-11A using high performance liquid chromatography (HPLC). This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

Amine Analysis

The Alumina tuebe samples were analyzed for triethylamine and dimethylisopropyl amine using a gas chromatograph equipped with a nitrogen phosphorus detector (NPD). This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

Ammonia Analysis

The Anasorb 747 tube samples were prepared in accordance with OSHA ID-188 and analyzed for ammonia in air by Ion Selective Electrode per OSHA ID-164. This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

The tube for sample 523GN-6 NH4 (P1302212-007) contained moisture.

Carboxylic Acids Analysis

The Silica gel tube samples were analyzed for carboxylic acids using combined gas chromatography/mass spectrometry (GC/MS) in accordance with laboratory operating procedures. This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

Sulfur Analysis

The Silonite Canister samples were also analyzed for twenty sulfur compounds per ASTM D 5504-08 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

Client:Stantec Consulting Services, Inc.Project:Bridgeton Landfill / 182608005

Service Request No: P1302212

CASE NARRATIVE

Volatile Organic Compound Analysis

The Silonite Canister samples were also analyzed for volatile organic compounds and tentatively identified compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. Any analytes flagged with an X are not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

The Summa canisters were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The Trip Blank (523Blank-SU) contained multiple TICS. No Target compounds with levels above the reporting limit were detected. The representativeness of a trip blank for air analyses is debatable since, following the use of any canister, it is standard laboratory procedure to clean and condition each can prior to being released for another project. Based on the results the data does not appear to be significantly affected by this anomaly. No further corrective action was appropriate.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of Columbia Analytical Services, Inc. dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

Columbia Analytical Services, Inc. dba ALS Environmental - Simi Valley

Certifications, Accreditations, and Registrations

Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L11-203
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp- services/labcert/labcert.htm	2012039
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	494864
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	CA200007
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 12-3
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01527201 2-2
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.caslab.com, www.alsglobal.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client: Stantec Consulting Services, Inc. Service Request: P1302212 Bridgeton Landfill / 182608005 Project ID: Can **DSHA ID-164 Modified - Ammonia** Carbox Acids - Carboxy Acids Date Received: 5/24/2013 ASTM D5504-08 - Sulfur Time Received: 09:45 70-11A - Carbonyls FO-15 - VOC Cans Amines - Amines Date Time Container Pi1 Pf1 Client Sample ID Lab Code Collected Collected ID Matrix (psig) (psig) 5/23/2013 523GN-SU P1302212-001 Air 15:55 AS00432 0.56 3.58 Х Х 523LF-SU Х P1302212-002 Air 5/23/2013 14:55 AS00313 3.75 Х 0.60 5/23/2013 Х Х 523HS-SU P1302212-003 Air 15:15 AS00068 0.58 3.53 Х Х 523Blank-SU P1302212-004 Air 5/23/2013 10:15 AS00198 -14.30 3.70 523GN-2 ALD P1302212-005 Air 5/23/2013 15:55 Х 523GN-4 Amine P1302212-006 Air 5/23/2013 15:55 Х Х 523GN-6 NH4 P1302212-007 5/23/2013 Air 15:55 523GN-7 CARBOX P1302212-008 5/23/2013 15:55 Х Air Х 523LF-2 ALD P1302212-009 Air 5/23/2013 14:55 523LF-4 Amine P1302212-010 Air 5/23/2013 14:55 Х Х 523LF-6 NH4 P1302212-011 Air 5/23/2013 14:55 14:55 523LF-7 CARBOX P1302212-012 5/23/2013 Air X 523HS-2 ALD P1302212-013 Air 5/23/2013 14:45 Х 523HS-4 Amine 5/23/2013 P1302212-014 Air 15:15 Х Х 523HS-6 NH4 P1302212-015 Air 5/23/2013 15:15 523HS-7 CARBOX P1302212-016 Air 5/23/2013 17:09 Х P1302212-017 5/23/2013 10:20 Х 523B-10 ALD Air 523B-12 Amine P1302212-018 Air 5/23/2013 10:20 Х Х 523B-14 NH4 P1302212-019 5/23/2013 10:20 Air 523B-15 CARBOX P1302212-020 5/23/2013 10:20 Air Х

Simi Valley, California 93065

Air - Chain of Custody Record & Analytical Service Request

N ď Page_

specific instructions METHODS Project Requirements ô ID 188 Preservative or ID ISS Comments e.g. Actual (MRLs, OAP) Cooler Pi-CANS 7015 + 71CS Tolla TOUR 50 N Q Q emperature D\$504 0 Ş CAS Contact: SAM AN True HENNNASEN CAS Project No. SSNA THV 05FA C DA E P P AGU AQU **B** 4 QU T-M Analysis Method Ш. В ASTAN EDD required Yes / No EPA * 9 259.982 54 464 040 154 121 77 286,200 48.828 See. 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35% 5 Day (25%) 10 Day-Standard 100 22 Sample Volume N X Requested Turnaround Time in Business Days (Surcharges) please circle Type: -0.04 -14,46 -14,46 End Pressure 20.0Y A A "Hg/psig Canister A V BRIDGETON LANDFILL -14.46 -14.46 Start Pressure 5600042 -14.46 Received by (Signature) 00 А 2 d Z Canister ц Ц Received by: (Signature) 182608005 5450026 Fr.00003 Flow Controller ID 2 P (Bar code #-CHRIS LALLOND ふく 42 FC #) Tier IV (Data Validation Package) 10% Surcharge SAME Tier III (Results + QC & Calibration Summerries) P.O. # / Billing Information Time: Sampler (Print & Sign 3002 PUA P IU 3004 3003 3006 2016 2015 Canister ID (Bar code # -AC, SC, etc.) 2002 1016 140 13685 4596 14706 Project Numbe. Project Name 51 5:53 15:55 55:14 5/23/13 KS:17:01 11:5 10.48.15 10:15 5:12 14:55 Collected 10:42 Siss 65:11 Time 55.11 11.55 482 M AX H19 25:11 Date: 5/23/13 5/23/13 D1234 5128/13 STANTEC.COM Collected Date Corumers, ON 43204 SOO LAKE SWORE DRIVE Laboratory ID Number Ch-HK2 [DK27] D to 43 STANTEC CONSULTING Company Name & Address (Reporting Information Fax 0 Q C \bigcirc Q G RAINE CARDOX 523GN-4 AMINE 523 GN-7 CARBOX Report Tier Levels - please select Fier I - Results (Default if not specified) $_$ cleb. Sray 2 5236F - 6 NHM ALD 523 &N-6 NH4 614 486 4383 Email Address for Result Reporting GREAT Ter II (Results + QC Surperfaries) 523GN-2 ALD 523BLANK - 5U 200 <u>523 LF - 50</u> Relinquished by: (Signature) Phone (805) 526-7161 523HS - SU Relinquished by: (Signature) 523LF-4 52315-7 Fax (805) 526-7270 2-17825 Client Sample ID oject Manager CEB 523GN anode

S Columbia Analytical Services

Air - Chain of Custody Record & Analytical Service Request

N Page 👗 of

2655 Park Center Drive, Suite A			<u>.</u>		\$			-	2	
оны у алеу, Саногла взоор Phone (805) 526-7161			0							
Fax (805) 526-7270			requested lumar 1 Day (100%) 2 Da	ound lime in Busir ly (75%) 3 Day (50%	ess Days (Surc 6) 4 Day (35%)∬	harges) please 5 Day (25%) 10	circle) Dav-Stand	ard	CAS Project N	50. 10. 10. 10.
								CAS Contact:		
Cumpany Name & Audress (Hepoting Information)			Project Name					NAN C	Contract	2
LAN RC CONSULTAR			X	IDGETON	Larde	2 6 8		Analvsis	Method	
SCOPER SORE DEIVE	a 4		Project Number							
Protect Managers, ON 43206	8		202	608005	Roselle					
			P.O. # / Billing Infor	mation						
Phone			V	0						Comments
614 486 4383 KIU 4		ŗ	5 	- lak						e.g. Actual Preservative or
Email Address for Result Reporting		6 A A	Sampler (Print & Sign)		1100					specific instructions
debisray & STANTEC.	CON		CHUSLA	Lense / L	Kerker aller	Sec. 1				
Circle Control	Date	Timo	Pound IT	Flow Controller ID	Canister	Canister				
Client sample ID	Collected	Collected	(Bareode # - AC & atc.)	(Bar code #- FC #)	Start Pressure "Hg	End Pressure "Ha/psia	Sample Volume			
523 WS - Z MED (1)	sksics	11:000	1964	24	NA	NN	276		A C	10
C' At a change of the contract	1.8	11:00			3.3 & 8					10110
22773 T AMWE W		15.13	2018	Argent	8 ¹⁰ 111		rf- 's	758	AQL	0
523H5 - 6 NH4 8		11:00 K	70192			anginate papagg	120	99	Csud	TPIEK
523 HS - 7 CARDY R		See S	1 6 V				101			
									1	10 C
							8	22		
5238-10 ALD 75/211	10:20		NA	Sugar	6		<		NA N	
523 8 - TL ANNE (9)	Фангалов		¢m.	1414	2					
CYZZ- RU RIER (W)			in the second			~	0		HAL	
2430 11 NAT 53					us	$\hat{\boldsymbol{\lambda}}$	0		C S T A	SSIAT.
523B-15 CARON Som	ļ					n	e		261	202
			r fêrên ar ber di bir de din							
							u u			
		`								
Report Tier Levels - please select Tier I - Results (Doroth B concentration)				1		Same and the second				
Tier II (Results + QC Summaries)		Fier III (Results - Fier IV (Data Va	+ QC & Calibration Sun lidation Package) 10%	nmaries) Surcharge			EDD requir Tyne:	ed Yes / No	0	Project Requirements
Relinquished by: (Signature)		Date:	Time?	1. V. V. V	· · · ·					
<u>Land</u> Belinniebed hu (Simonus)	-	Shalls	1.30 7	received by Ising	81000	2	V	LUND ST	me:	<i>46</i>
יאט איז		late:	lime:	Received by: (Signatu	e)			ate:	ime:	Cooler / Blank
										emperature

Columbia Analytical Services*

Λ

Now	part of the ALS G	roup	Sampl	e Acceptance	Check Form	n				
Client	: Stantec Consul	ting Services, Inc.				Work order:	P1302212			
Project	: Bridgeton Lan	dfill / 182608005								
Sample	(s) received on:	5/24/13]	Date opened:	5/24/13	by:	MZAN	IORA	
<i>Note:</i> This	form is used for <u>all</u>	samples received by ALS.	The use of this fo	orm for custody se	eals is strictly me	eant to indicate pres	sence/absence and n	ot as an in	dication	of
compliance	e or nonconformity.	Thermal preservation and	pH will only be ev	valuated either at	the request of the	e client and/or as re	equired by the metho	od/SOP. <u>Yes</u>	<u>No</u>	<u>N/A</u>
1	Were sample of	containers properly r	marked with cli	ent sample ID	?			X		
2	Container(s) su	pplied by ALS?						X		
3	Did sample co	ntainers arrive in go	od condition?					X		
4	Were chain-of	-custody papers used	l and filled out	?				X		
5	5 Did sample container labels and/or tags agree with custody papers? \square									
6	6 Was sample volume received adequate for analysis?							X		
7	7 Are samples within specified holding times?							X		
8	8 Was proper temperature (thermal preservation) of cooler at receipt adhered to?									X
	Cooler Tem	perature: 6° C Bla	nk Temperatur	e: °C		Gel	Packs			
9	Was a trip bla	nk received?							X	
10	Were custody	seals on outside of co	ooler/Box?						X	
		Location of seal(s)?					Sealing Lid?			X
	Were signature	e and date included?								X
	Were seals inta	act?								X
	Were custody	seals on outside of sa	mple container	?					X	
		Location of seal(s)?					Sealing Lid?			X
	Were signature	e and date included?								X
	Were seals inta	act?								X
11	Do container	s have appropriate p	reservation, ad	ccording to me	thod/SOP or	Client specified	l information?			X
	Is there a clier	nt indication that the s	submitted samp	oles are pH pre	eserved?					X
	Were <u>VOA vi</u>	als checked for prese	ence/absence of	f air bubbles?						X
	Does the client	/method/SOP require	e that the analys	st check the sa	mple pH and	if necessary alt	er it?			X
12	Tubes:	Are the tubes cap	ped and intact?)				X		
		Do they contain n	noisture?					X		
13	Badges:	Are the badges pr	roperly capped	and intact?						X
		Are dual bed bad	ges separated a	nd individuall	y capped and	intact?				X
	a	<i>a</i>		D • • •						

Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receipt / Preservation
	Description	pH *	рН	рН	(Presence/Absence)	Comments
P1302212-001.01	6.0 L Silonite Can					
P1302212-002.01	6.0 L Silonite Can					
P1302212-003.01	6.0 L Silonite Can					
P1302212-004.01	6.0 L Silonite Can					
P1302212-005.01	Silica Gel DNPH Tube					
P1302212-006.03	Treated Alumina Tube					
P1302212-007.04	Anasorb 747 Tube					Moisture present in the tube
P1302212-008.01	Silica Gel (C. Acids)					

Explain any discrepancies: (include lab sample ID numbers):

Flow controllers listed on COC werte NOT received.

Γ

Client is writing sample IDs directly on the canisters, and placing tape (w/ the sample ID on it) directly on the canisters.

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

Work order:

Now	part o	f the	ALS	Group

Δ

Client: <u>Stantec Consulting Services, Inc.</u>

Sample Acceptance Check Form

P1302212

Project: Bridgeton Lar	ndfill / 182608005			-	•	
Sample(s) received on:	5/24/13]	Date opened:	5/24/13	by: MZAMORA
Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receipt / Preservation
	Description	pH *	pH	pH	(Presence/Absence)	Comments
P1302212-009.01	Silica Gel DNPH Tube					
P1302212-010.03	Treated Alumina Tube					
P1302212-011.04	Anasorb 747 Tube					
P1302212-012.01	Silica Gel (C. Acids)					
P1302212-013.01	Silica Gel DNPH Tube					
P1302212-014.03	Treated Alumina Tube					
P1302212-015.04	Anasorb 747 Tube					
P1302212-016.01	Silica Gel (C. Acids)					
P1302212-017.01	Silica Gel DNPH Tube					
P1302212-018.03	Treated Alumina Tube					
P1302212-019.04	Anasorb 747 Tube					
P1302212-020.01	Silica Gel (C. Acids)					

Explain any discrepancies: (include lab sample ID numbers):

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

- - - - - -

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	523GN-2 ALD
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	EPA Method TO-11A
Instrument ID:	Agilent Infinity LC 1220/LC3
Analyst:	Lusine Hakobyan
Sample Type:	Silica Gel DNPH Tube
Test Notes:	BC

CAS Project ID: P1302212 CAS Sample ID: P1302212-005

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/28/13 Desorption Volume: 1.0 ml Volume Sampled: 286.8 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		ng/Sample	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
50-00-0	Formaldehyde	120	0.40	0.35	0.33	0.28	
75-07-0	Acetaldehyde	920	3.2	0.35	1.8	0.19	BH
123-38-6	Propionaldehyde	< 100	ND	0.35	ND	0.15	
4170-30-3	Crotonaldehyde, Total	< 100	ND	0.35	ND	0.12	
123-72-8	Butyraldehyde	< 100	ND	0.35	ND	0.12	
100-52-7	Benzaldehyde	< 100	ND	0.35	ND	0.080	
590-86-3	Isovaleraldehyde	< 100	ND	0.35	ND	0.099	
110-62-3	Valeraldehyde	< 100	ND	0.35	ND	0.099	
529-20-4	o-Tolualdehyde	< 100	ND	0.35	ND	0.071	
620-23-5							
104-87-0	m,p-Tolualdehyde	< 200	ND	0.70	ND	0.14	
66-25-1	n-Hexaldehyde	< 100	ND	0.35	ND	0.085	
5779-94-2	2,5-Dimethylbenzaldehyde	< 100	ND	0.35	ND	0.064	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

BH = Results indicate breakthrough; back section of tube greater than front section.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:523LF-2 ALDClient Project ID:Bridgeton Landfill / 182608005

Test Code:	EPA Method TO-11A	Da
Instrument ID:	Agilent Infinity LC 1220/LC3	Da
Analyst:	Lusine Hakobyan	Da
Sample Type:	Silica Gel DNPH Tube	Desorp
Test Notes:	BC	Volu

CAS Project ID: P1302212 CAS Sample ID: P1302212-009

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/28/13 Desorption Volume: 1.0 ml Volume Sampled: 299.982 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		ng/Sample	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
50-00-0	Formaldehyde	330	1.1	0.33	0.89	0.27	
75-07-0	Acetaldehyde	210	0.70	0.33	0.39	0.19	
123-38-6	Propionaldehyde	< 100	ND	0.33	ND	0.14	
4170-30-3	Crotonaldehyde, Total	< 100	ND	0.33	ND	0.12	
123-72-8	Butyraldehyde	< 100	ND	0.33	ND	0.11	
100-52-7	Benzaldehyde	< 100	ND	0.33	ND	0.077	
590-86-3	Isovaleraldehyde	< 100	ND	0.33	ND	0.095	
110-62-3	Valeraldehyde	< 100	ND	0.33	ND	0.095	
529-20-4	o-Tolualdehyde	< 100	ND	0.33	ND	0.068	
620-23-5							
104-87-0	m,p-Tolualdehyde	< 200	ND	0.67	ND	0.14	
66-25-1	n-Hexaldehyde	< 100	ND	0.33	ND	0.081	
5779-94-2	2,5-Dimethylbenzaldehyde	< 100	ND	0.33	ND	0.061	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	523HS-2 ALD
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	EPA Method TO-11A
Instrument ID:	Agilent Infinity LC 1220/LC3
Analyst:	Lusine Hakobyan
Sample Type:	Silica Gel DNPH Tube
Test Notes:	BC

CAS Project ID: P1302212 CAS Sample ID: P1302212-013

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/28/13 Desorption Volume: 1.0 ml Volume Sampled: 265.717 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		ng/Sample	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
50-00-0	Formaldehyde	< 100	ND	0.38	ND	0.31	
75-07-0	Acetaldehyde	290	1.1	0.38	0.60	0.21	
123-38-6	Propionaldehyde	< 100	ND	0.38	ND	0.16	
4170-30-3	Crotonaldehyde, Total	< 100	ND	0.38	ND	0.13	
123-72-8	Butyraldehyde	< 100	ND	0.38	ND	0.13	
100-52-7	Benzaldehyde	< 100	ND	0.38	ND	0.087	
590-86-3	Isovaleraldehyde	< 100	ND	0.38	ND	0.11	
110-62-3	Valeraldehyde	< 100	ND	0.38	ND	0.11	
529-20-4	o-Tolualdehyde	< 100	ND	0.38	ND	0.077	
620-23-5							
104-87-0	m,p-Tolualdehyde	< 200	ND	0.75	ND	0.15	
66-25-1	n-Hexaldehyde	< 100	ND	0.38	ND	0.092	
5779-94-2	2,5-Dimethylbenzaldehyde	< 100	ND	0.38	ND	0.069	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. BC = Results reported are not blank corrected.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	523B-10 ALD
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	EPA Method TO-11A	Da
Instrument ID:	Agilent Infinity LC 1220/LC3	D
Analyst:	Lusine Hakobyan	Da
Sample Type:	Silica Gel DNPH Tube	Desorp
Test Notes:	BC	Volu

CAS Project ID: P1302212 CAS Sample ID: P1302212-017

Date Collected:	5/23/13
Date Received:	5/24/13
Date Analyzed:	5/28/13
Desorption Volume:	1.0 ml
Volume Sampled:	NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		ng/Sample	μg/m³	µg/m³	ppbV	ppbV	Qualifier
50-00-0	Formaldehyde	< 100	NA	NA	NA	NA	
75-07-0	Acetaldehyde	< 100	NA	NA	NA	NA	
123-38-6	Propionaldehyde	< 100	NA	NA	NA	NA	
4170-30-3	Crotonaldehyde, Total	< 100	NA	NA	NA	NA	
123-72-8	Butyraldehyde	< 100	NA	NA	NA	NA	
100-52-7	Benzaldehyde	< 100	NA	NA	NA	NA	
590-86-3	Isovaleraldehyde	< 100	NA	NA	NA	NA	
110-62-3	Valeraldehyde	< 100	NA	NA	NA	NA	
529-20-4	o-Tolualdehyde	< 100	NA	NA	NA	NA	
620-23-5							
104-87-0	m,p-Tolualdehyde	< 200	NA	NA	NA	NA	
66-25-1	n-Hexaldehyde	< 100	NA	NA	NA	NA	
5779-94-2	2,5-Dimethylbenzaldehyde	< 100	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

NA = Not applicable.

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	Method Blank
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	EPA Method TO-11A
Instrument ID:	Agilent Infinity LC 1220/LC3
Analyst:	Lusine Hakobyan
Sample Type:	Silica Gel DNPH Tube
Test Notes:	BC

CAS Project ID: P1302212 CAS Sample ID: P130528-MB

Date Collected: NA Date Received: NA Date Analyzed: 05/28/13 Desorption Volume: 1.0 ml Volume Sampled: NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		ng/Sample	μg/m³	μg/m³	ppbV	ppbV	Qualifier
50-00-0	Formaldehyde	< 100	NA	NA	NA	NA	
75-07-0	Acetaldehyde	< 100	NA	NA	NA	NA	
123-38-6	Propionaldehyde	< 100	NA	NA	NA	NA	
4170-30-3	Crotonaldehyde, Total	< 100	NA	NA	NA	NA	
123-72-8	Butyraldehyde	< 100	NA	NA	NA	NA	
100-52-7	Benzaldehyde	< 100	NA	NA	NA	NA	
590-86-3	Isovaleraldehyde	< 100	NA	NA	NA	NA	
110-62-3	Valeraldehyde	< 100	NA	NA	NA	NA	
529-20-4	o-Tolualdehyde	< 100	NA	NA	NA	NA	
620-23-5							
104-87-0	m,p-Tolualdehyde	< 200	NA	NA	NA	NA	
66-25-1	n-Hexaldehyde	< 100	NA	NA	NA	NA	
5779-94-2	2,5-Dimethylbenzaldehyde	< 100	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

NA = Not applicable.

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:523GN-4 AmineClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	BC, DE

CAS Project ID: P1302212 CAS Sample ID: P1302212-006

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Desorption Volume: 2.0 ml Volume Sampled: 48.828 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
124-40-3	Dimethylamine	< 0.53	ND	11	ND	5.9	
75-04-7	Ethylamine	< 0.55	ND	11	ND	6.1	
75-50-3	Trimethylamine	< 0.52	ND	11	ND	4.4	
75-31-0	Isopropylamine	< 0.52	ND	11	ND	4.4	
75-64-9	tert-Butylamine	< 1.1	ND	22	ND	7.2	
107-10-8	n-Propylamine	< 0.55	ND	11	ND	4.7	
109-89-7	Diethylamine	< 0.52	ND	11	ND	3.5	
13952-84-6	sec-Butylamine	< 0.53	ND	11	ND	3.6	
78-81-9	Isobutylamine	< 0.54	ND	11	ND	3.7	
109-73-9	n-Butylamine	< 0.53	ND	11	ND	3.7	
108-18-9	Diisopropylamine	< 0.51	ND	10	ND	2.5	
121-44-8	Triethylamine	< 0.51	ND	10	ND	2.5	
142-84-7	Dipropylamine	< 0.52	ND	11	ND	2.6	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:523LF-4 AmineClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	BC, DE

CAS Project ID: P1302212 CAS Sample ID: P1302212-010

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Desorption Volume: 2.0 ml Volume Sampled: 54.464 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		μg/Tube	μg/m³	µg/m³	ppbV	ppbV	Qualifier
124-40-3	Dimethylamine	< 0.53	ND	9.7	ND	5.3	
75-04-7	Ethylamine	< 0.55	ND	10	ND	5.4	
75-50-3	Trimethylamine	< 0.52	ND	9.5	ND	3.9	
75-31-0	Isopropylamine	< 0.52	ND	9.6	ND	4.0	
75-64-9	tert-Butylamine	< 1.1	ND	19	ND	6.5	
107-10-8	n-Propylamine	< 0.55	ND	10	ND	4.2	
109-89-7	Diethylamine	< 0.52	ND	9.5	ND	3.2	
13952-84-6	sec-Butylamine	< 0.53	ND	9.7	ND	3.2	
78-81-9	Isobutylamine	< 0.54	ND	9.9	ND	3.3	
109-73-9	n-Butylamine	< 0.53	ND	9.8	ND	3.3	
108-18-9	Diisopropylamine	< 0.51	ND	9.3	ND	2.3	
121-44-8	Triethylamine	< 0.51	ND	9.4	ND	2.3	
142-84-7	Dipropylamine	< 0.52	ND	9.5	ND	2.3	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:523HS-4 AmineClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	BC, DE

CAS Project ID: P1302212 CAS Sample ID: P1302212-014

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Desorption Volume: 2.0 ml Volume Sampled: 57.798 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		μg/Tube	μg/m³	µg/m³	ppbV	ppbV	Qualifier
124-40-3	Dimethylamine	< 0.53	ND	9.1	ND	5.0	
75-04-7	Ethylamine	< 0.55	ND	9.5	ND	5.1	
75-50-3	Trimethylamine	< 0.52	ND	8.9	ND	3.7	
75-31-0	Isopropylamine	< 0.52	ND	9.1	ND	3.8	
75-64-9	tert-Butylamine	< 1.1	ND	18	ND	6.1	
107-10-8	n-Propylamine	< 0.55	ND	9.5	ND	3.9	
109-89-7	Diethylamine	< 0.52	ND	8.9	ND	3.0	
13952-84-6	sec-Butylamine	< 0.53	ND	9.2	ND	3.1	
78-81-9	Isobutylamine	< 0.54	ND	9.3	ND	3.1	
109-73-9	n-Butylamine	< 0.53	ND	9.2	ND	3.1	
108-18-9	Diisopropylamine	< 0.51	ND	8.8	ND	2.1	
121-44-8	Triethylamine	< 0.51	ND	8.9	ND	2.1	
142-84-7	Dipropylamine	< 0.52	ND	8.9	ND	2.2	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:523B-12 AmineClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	BC, DE

CAS Project ID: P1302212 CAS Sample ID: P1302212-018

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Desorption Volume: 2.0 ml Volume Sampled: NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	μg/m³	ppbV	ppbV	Qualifier
124-40-3	Dimethylamine	< 0.53	NA	NA	NA	NA	
75-04-7	Ethylamine	< 0.55	NA	NA	NA	NA	
75-50-3	Trimethylamine	< 0.52	NA	NA	NA	NA	
75-31-0	Isopropylamine	< 0.52	NA	NA	NA	NA	
75-64-9	tert-Butylamine	< 1.1	NA	NA	NA	NA	
107-10-8	n-Propylamine	< 0.55	NA	NA	NA	NA	
109-89-7	Diethylamine	< 0.52	NA	NA	NA	NA	
13952-84-6	sec-Butylamine	< 0.53	NA	NA	NA	NA	
78-81-9	Isobutylamine	< 0.54	NA	NA	NA	NA	
109-73-9	n-Butylamine	< 0.53	NA	NA	NA	NA	
108-18-9	Diisopropylamine	< 0.51	NA	NA	NA	NA	
121-44-8	Triethylamine	< 0.51	NA	NA	NA	NA	
142-84-7	Dipropylamine	< 0.52	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

NA = Not applicable.

Page 1 of 1

Client: Stantec Consulting Services, Inc. Client Sample ID: Method Blank Client Project ID: Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	BC, DE

CAS Project ID: P1302212 CAS Sample ID: P130530-MB

Date Collected: NA Date Received: NA Date Analyzed: 5/30/13 Desorption Volume: 2.0 ml Volume Sampled: NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	μg/m³	ppbV	ppbV	Qualifier
124-40-3	Dimethylamine	< 0.53	NA	NA	NA	NA	
75-04-7	Ethylamine	< 0.55	NA	NA	NA	NA	
75-50-3	Trimethylamine	< 0.52	NA	NA	NA	NA	
75-31-0	Isopropylamine	< 0.52	NA	NA	NA	NA	
75-64-9	tert-Butylamine	< 1.1	NA	NA	NA	NA	
107-10-8	n-Propylamine	< 0.55	NA	NA	NA	NA	
109-89-7	Diethylamine	< 0.52	NA	NA	NA	NA	
13952-84-6	sec-Butylamine	< 0.53	NA	NA	NA	NA	
78-81-9	Isobutylamine	< 0.54	NA	NA	NA	NA	
109-73-9	n-Butylamine	< 0.53	NA	NA	NA	NA	
108-18-9	Diisopropylamine	< 0.51	NA	NA	NA	NA	
121-44-8	Triethylamine	< 0.51	NA	NA	NA	NA	
142-84-7	Dipropylamine	< 0.52	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

NA = Not applicable.

Now part of the

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Stantec Consulting Services, Inc.
Duplicate Lab Control Sample
Bridgeton Landfill / 182608005

Test Code:	GC/NPD
Instrument ID:	Agilent 6890N/GC15/NPD
Analyst:	Zheng Wang
Sampling Media:	Treated Alumina Tube
Test Notes:	

CAS Project ID: P1302212 CAS Sample ID: P130530-DLCS

Date Collected: NA Date Received: NA Date Analyzed: 5/30/13 Volume(s) Analyzed: NA Liter(s)

		Spike Amount	Spike Amount Result		CAS					
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		µg/ml	µg/ml	µg/ml	LCS	DLCS	Limits		Limit	Qualifier
124-40-3	Dimethylamine	8.30	7.90	8.17	95	98	57-129	3	19	
75-04-7	Ethylamine	8.39	7.92	8.37	94	100	52-127	6	18	
75-50-3	Trimethylamine	9.97	8.59	8.91	86	89	44-139	3	35	
75-31-0	Isopropylamine	9.01	8.79	9.35	98	104	64-127	6	16	
75-64-9	tert-Butylamine	8.65	8.31	8.87	96	103	65-129	7	20	
107-10-8	n-Propylamine	9.89	9.83	10.6	99	107	57-127	8	14	
109-89-7	Diethylamine	9.19	9.18	9.70	100	106	65-128	6	16	
13952-84-6	sec-Butylamine	9.24	9.28	9.98	100	108	68-125	8	14	
78-81-9	Isobutylamine	8.80	8.92	9.52	101	108	65-125	7	15	
109-73-9	n-Butylamine	8.53	8.79	9.07	103	106	68-123	3	16	
108-18-9	Diisopropylamine	8.34	8.09	8.85	97	106	63-128	9	17	
121-44-8	Triethylamine	9.01	8.56	9.13	95	101	65-125	6	19	
142-84-7	Dipropylamine	8.48	8.81	9.22	104	109	70-125	5	14	

.

RESULTS OF ANALYSIS Page 1 of 1

Client: Stantec Consulting Services, Inc. Bridgeton Landfill / 182608005 **Client Project ID:**

CAS Project ID: P1302212

.

.

Ammonia

Test Code:	OSHA ID-188/ID-164	Date(s) Collected: 5/23/13
Instrument ID:	PH01/Thermo Orion 920A+/Ammonia ISE	Date Received: 5/24/13
Analyst:	Sue Anderson	Date Analyzed: 5/30/13
Sampling Media:	Anasorb 747 Tube(s) (Sulfuric Treated)	Desorption Volume: 0.10 Liter(s)
Test Notes:	BC, DE	

Client Sample ID	CAS Sample ID	Sample Volume	Dilution	Result	Result	MRL	Result	MRL	Data
		Liter(s)	Factor	mg/Tube	mg/m³	mg/m³	ppmV	ppmV	Qualifier
523GN-6 NH4	P1302212-007	122.040	1.0	0.014	0.11	0.088	0.16	0.13	
523LF-6 NH4	P1302212-011	121.771	1.0	< 0.011	ND	0.088	ND	0.13	
523HS-6 NH4	P1302212-015	120.289	1.0	< 0.011	ND	0.089	ND	0.13	
523B-14 NH4	P1302212-019	NA	1.0	< 0.011	NA	NA	NA	NA	
Method Blank	P130530-MB	NA	1.0	< 0.011	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

NA = Not applicable.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.	
Client Sample ID:	Duplicate Lab Control Sample	CAS Project ID: P1302212
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P130530-LCS,
		P130530-DLCS

.

Laboratory Control Sample/Duplicate Laboratory Control Sample Summary

Test Code:	OSHA ID-188/ID-164	Date Sampled: N/A
Instrument ID:	PH01/Thermo Orion 920A+/Ammonia ISE	Date Received: N/A
Analyst:	Sue Anderson	Date Analyzed: 5/30/13
Sampling Media:	Anasorb 747 Tube(s) (Sulfuric Treated)	Volume(s) Analyzed: N/A
Test Notes:		

	Spike Amount	Re	sult	% Re	covery	CAS	Relative		
Compound	LCS / DLCS	LCS	DLCS	LCS	DLCS	Acceptance	Percent	RPD	Data
	mg/L	mg/L	mg/L			Limits	Difference	Limit	Qualifier
Ammonia	1.00	1.07	1.05	107	105	80-104	2	5	

.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:523GN-7 CARBOXClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/MS
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Analyst:	Evelyn Ibarra
Sampling Media:	Silica Gel Tube
Test Notes:	BC, DE

CAS Project ID: P1302212 CAS Sample ID: P1302212-008

Date Collected:	5/23/13
Date Received:	5/24/13
Date Analyzed:	5/29 - 5/30/13
Desorption Volume:	1.0 ml
Volume Sampled:	NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	µg/m³	µg/m³	ррых	ррых	Qualifier
64-19-7	Acetic Acid	< 2.0	NA	NA	NA	NA	
79-09-4	Propionic Acid (Propanoic)	< 0.24	NA	NA	NA	NA	
79-31-2	2-Methylpropanoic Acid (Isobutyric)	< 0.25	NA	NA	NA	NA	
107-92-6	Butanoic Acid (Butyric)	< 0.24	NA	NA	NA	NA	
116-53-0	2-Methylbutanoic Acid	< 0.24	NA	NA	NA	NA	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	< 0.25	NA	NA	NA	NA	
109-52-4	Pentanoic Acid (Valeric)	< 0.25	NA	NA	NA	NA	
97-61-0	2-Methylpentanoic Acid	< 0.24	NA	NA	NA	NA	
105-43-1	3-Methylpentanoic Acid	< 0.25	NA	NA	NA	NA	
646-07-1	4-Methylpentanoic Acid (Isocaproic)	< 0.24	NA	NA	NA	NA	
142-62-1	Hexanoic Acid (Caproic)	< 0.25	NA	NA	NA	NA	
111-14-8	Heptanoic Acid (Enanthoic)	< 0.24	NA	NA	NA	NA	
149-57-5	2-Ethylhexanoic Acid	< 0.25	NA	NA	NA	NA	
98-89-5	Cyclohexanecarboxylic Acid	< 0.24	NA	NA	NA	NA	
124-07-2	Octanoic Acid (Caprylic)	< 0.24	NA	NA	NA	NA	
65-85-0	Benzoic Acid	< 0.26	NA	NA	NA	NA	
112-05-0	Nonanoic Acid (Pelargonic)	< 0.25	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

NA = Not applicable.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:523LF-7 CARBOXClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/MS
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Analyst:	Evelyn Ibarra
Sampling Media:	Silica Gel Tube
Test Notes:	BC, DE

CAS Project ID: P1302212 CAS Sample ID: P1302212-012

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Desorption Volume: 1.0 ml Volume Sampled: 100.159 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m ³	µg∕m³	ppbV	ppbV	Qualifier
64-19-7	Acetic Acid	< 2.0	ND	20	ND	8.1	
79-09-4	Propionic Acid (Propanoic)	< 0.24	ND	2.4	ND	0.80	
79-31-2	2-Methylpropanoic Acid (Isobutyric)	< 0.25	ND	2.4	ND	0.68	
107-92-6	Butanoic Acid (Butyric)	< 0.24	ND	2.4	ND	0.67	
116-53-0	2-Methylbutanoic Acid	< 0.24	ND	2.4	ND	0.58	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	< 0.25	ND	2.4	ND	0.59	
109-52-4	Pentanoic Acid (Valeric)	< 0.25	ND	2.5	ND	0.59	
97-61-0	2-Methylpentanoic Acid	< 0.24	ND	2.4	ND	0.51	
105-43-1	3-Methylpentanoic Acid	< 0.25	ND	2.5	ND	0.52	
646-07-1	4-Methylpentanoic Acid (Isocaproic)	< 0.24	ND	2.4	ND	0.51	
142-62-1	Hexanoic Acid (Caproic)	< 0.25	ND	2.5	ND	0.52	
111-14-8	Heptanoic Acid (Enanthoic)	< 0.24	ND	2.4	ND	0.46	
149-57-5	2-Ethylhexanoic Acid	< 0.25	ND	2.4	ND	0.42	
98-89-5	Cyclohexanecarboxylic Acid	< 0.24	ND	2.4	ND	0.46	
124-07-2	Octanoic Acid (Caprylic)	< 0.24	ND	2.4	ND	0.41	
65-85-0	Benzoic Acid	< 0.26	ND	2.5	ND	0.51	
112-05-0	Nonanoic Acid (Pelargonic)	< 0.25	ND	2.5	ND	0.38	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:523HS-7 CARBOXClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/MS
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Analyst:	Evelyn Ibarra
Sampling Media:	Silica Gel Tube
Test Notes:	BC, DE

CAS Project ID: P1302212 CAS Sample ID: P1302212-016

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Desorption Volume: 1.0 ml Volume Sampled: 99.820 Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m³	µg/m³	ppbV	ppbV	Qualifier
64-19-7	Acetic Acid	< 2.0	ND	20	ND	8.1	
79-09-4	Propionic Acid (Propanoic)	< 0.24	ND	2.4	ND	0.80	
79-31-2	2-Methylpropanoic Acid (Isobutyric)	< 0.25	ND	2.5	ND	0.68	
107-92-6	Butanoic Acid (Butyric)	< 0.24	ND	2.4	ND	0.68	
116-53-0	2-Methylbutanoic Acid	< 0.24	ND	2.4	ND	0.58	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	< 0.25	ND	2.5	ND	0.59	
109-52-4	Pentanoic Acid (Valeric)	< 0.25	ND	2.5	ND	0.59	
97-61-0	2-Methylpentanoic Acid	< 0.24	ND	2.4	ND	0.51	
105-43-1	3-Methylpentanoic Acid	< 0.25	ND	2.5	ND	0.52	
646-07-1	4-Methylpentanoic Acid (Isocaproic)	< 0.24	ND	2.4	ND	0.51	
142-62-1	Hexanoic Acid (Caproic)	< 0.25	ND	2.5	ND	0.52	
111-14-8	Heptanoic Acid (Enanthoic)	< 0.24	ND	2.4	ND	0.46	
149-57-5	2-Ethylhexanoic Acid	< 0.25	ND	2.5	ND	0.42	
98-89-5	Cyclohexanecarboxylic Acid	< 0.24	ND	2.4	ND	0.46	
124-07-2	Octanoic Acid (Caprylic)	< 0.24	ND	2.4	ND	0.41	
65-85-0	Benzoic Acid	< 0.26	ND	2.6	ND	0.51	
112-05-0	Nonanoic Acid (Pelargonic)	< 0.25	ND	2.5	ND	0.38	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:523B-15 CARBOXClient Project ID:Bridgeton Landfill / 182608005

Test Code:	GC/MS
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Analyst:	Evelyn Ibarra
Sampling Media:	Silica Gel Tube
Test Notes:	BC, DE

CAS Project ID: P1302212 CAS Sample ID: P1302212-020

Date Collected:	5/23/13
Date Received:	5/24/13
Date Analyzed:	5/30/13
Desorption Volume:	1.0 ml
Volume Sampled:	NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	µg/m³	µg/m³	ppbv	ррбу	Qualifier
64-19-7	Acetic Acid	< 2.0	NA	NA	NA	NA	
79-09-4	Propionic Acid (Propanoic)	< 0.24	NA	NA	NA	NA	
79-31-2	2-Methylpropanoic Acid (Isobutyric)	< 0.25	NA	NA	NA	NA	
107-92-6	Butanoic Acid (Butyric)	< 0.24	NA	NA	NA	NA	
116-53-0	2-Methylbutanoic Acid	< 0.24	NA	NA	NA	NA	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	< 0.25	NA	NA	NA	NA	
109-52-4	Pentanoic Acid (Valeric)	< 0.25	NA	NA	NA	NA	
97-61-0	2-Methylpentanoic Acid	< 0.24	NA	NA	NA	NA	
105-43-1	3-Methylpentanoic Acid	< 0.25	NA	NA	NA	NA	
646-07-1	4-Methylpentanoic Acid (Isocaproic)	< 0.24	NA	NA	NA	NA	
142-62-1	Hexanoic Acid (Caproic)	< 0.25	NA	NA	NA	NA	
111-14-8	Heptanoic Acid (Enanthoic)	< 0.24	NA	NA	NA	NA	
149-57-5	2-Ethylhexanoic Acid	< 0.25	NA	NA	NA	NA	
98-89-5	Cyclohexanecarboxylic Acid	< 0.24	NA	NA	NA	NA	
124-07-2	Octanoic Acid (Caprylic)	< 0.24	NA	NA	NA	NA	
65-85-0	Benzoic Acid	< 0.26	NA	NA	NA	NA	
112-05-0	Nonanoic Acid (Pelargonic)	< 0.25	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

NA = Not applicable.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	Method Blank
Client Project ID:	Bridgeton Landfill / 182608005

Test Notes:	BC, DE
Sampling Media:	Silica Gel Tube
Analyst:	Evelyn Ibarra
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Test Code:	GC/MS

CAS Project ID: P1302212 CAS Sample ID: P130529-MB

Date Collected:	NA
Date Received:	NA
Date Analyzed:	5/29/13
Desorption Volume:	1.0 ml
Volume Sampled:	NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Tube	μg/m ³	$\mu g/m^3$	ppbV	ppbV	Qualifier
64-19-7	Acetic Acid	< 2.0	NA	NA	NA	NA	
79-09-4	Propionic Acid (Propanoic)	< 0.24	NA	NA	NA	NA	
79-31-2	2-Methylpropanoic Acid (Isobutyric)	< 0.25	NA	NA	NA	NA	
107-92-6	Butanoic Acid (Butyric)	< 0.24	NA	NA	NA	NA	
116-53-0	2-Methylbutanoic Acid	< 0.24	NA	NA	NA	NA	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	< 0.25	NA	NA	NA	NA	
109-52-4	Pentanoic Acid (Valeric)	< 0.25	NA	NA	NA	NA	
97-61-0	2-Methylpentanoic Acid	< 0.24	NA	NA	NA	NA	
105-43-1	3-Methylpentanoic Acid	< 0.25	NA	NA	NA	NA	
646-07-1	4-Methylpentanoic Acid (Isocaproic)	< 0.24	NA	NA	NA	NA	
142-62-1	Hexanoic Acid (Caproic)	< 0.25	NA	NA	NA	NA	
111-14-8	Heptanoic Acid (Enanthoic)	< 0.24	NA	NA	NA	NA	
149-57-5	2-Ethylhexanoic Acid	< 0.25	NA	NA	NA	NA	
98-89-5	Cyclohexanecarboxylic Acid	< 0.24	NA	NA	NA	NA	
124-07-2	Octanoic Acid (Caprylic)	< 0.24	NA	NA	NA	NA	
65-85-0	Benzoic Acid	< 0.26	NA	NA	NA	NA	
112-05-0	Nonanoic Acid (Pelargonic)	< 0.25	NA	NA	NA	NA	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

BC = Results reported are not blank corrected.

DE = Results reported are corrected for desorption efficiency.

NA = Not applicable.

Now part of the

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Stantec Consulting Services, Inc.
Duplicate Lab Control Sample
Bridgeton Landfill / 182608005

Test Code:	GC/MS
Instrument ID:	Agilent 5973/Agilent 6890/MS14
Analyst:	Evelyn Ibarra
Sampling Media:	Silica Gel Tube
Test Notes:	

CAS Project ID: P1302212 CAS Sample ID: P130529-DLCS

Date Collected: NA Date Received: NA Date Analyzed: 5/29/13 Volume(s) Analyzed: NA Liter(s)

		Spike Amount	Re	sult			CAS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		µg/ml	µg/ml	µg/ml	LCS	DLCS	Limits		Limit	Qualifier
64-19-7	Acetic Acid	22.6	21.5	21.6	95	96	66-135	1	26	
79-09-4	Propionic Acid (Propanoic)	10.7	10.8	10.3	101	96	76-126	5	14	
79-31-2	2-Methylpropanoic Acid (Isobutyric) 11.2	11.5	10.8	103	96	84-118	7	13	
107-92-6	Butanoic Acid (Butyric)	10.8	10.8	10.2	100	94	85-117	6	11	
116-53-0	2-Methylbutanoic Acid	10.4	10.7	10.2	103	98	87-116	5	11	
503-74-2	3-Methylbutanoic Acid (Isovaleric)	11.3	11.1	11.0	98	97	88-114	1	10	
109-52-4	Pentanoic Acid (Valeric)	10.5	10.4	10.1	99	96	89-113	3	11	
97-61-0	2-Methylpentanoic Acid	10.8	11.1	10.6	103	98	88-113	5	10	
105-43-1	3-Methylpentanoic Acid	10.9	11.1	10.5	102	96	88-113	6	10	
646-07-1	4-Methylpentanoic Acid (Isocaproic) 10.8	10.9	10.3	101	95	89-113	6	11	
142-62-1	Hexanoic Acid (Caproic)	10.9	10.6	10.3	97	94	87-114	3	11	
111-14-8	Heptanoic Acid (Enanthoic)	8.95	9.21	9.16	103	102	84-116	1	10	
149-57-5	2-Ethylhexanoic Acid	8.14	8.27	7.92	102	97	82-111	5	12	
98-89-5	Cyclohexanecarboxylic Acid	6.93	7.09	7.00	102	101	85-115	1	10	
124-07-2	Octanoic Acid (Caprylic)	8.65	8.70	8.78	101	102	84-116	1	11	
65-85-0	Benzoic Acid	8.17	8.38	7.76	103	95	72-109	8	13	
112-05-0	Nonanoic Acid (Pelargonic)	8.82	8.61	8.52	98	97	84-116	1	10	

P1302212_Carboxylic Acids_1306031131_SC.xls - DLCS

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.		
Client Sample ID:	523GN-SU	CAS Project ID: P1302212	
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P1302212-001	
Test Code:	ASTM D 5504-08	Date Collected: 5/23/13	
Instrument ID:	Agilent 7890A/GC22/SCD Time Collected: 15:55		
Analyst:	Mike Conejo	Date Received: 5/24/13	
Sample Type:	6.0 L Summa Canister	Date Analyzed: 5/29/13	
Test Notes:		Time Analyzed: 09:45	
Container ID:	AS00432	Volume(s) Analyzed: 1.0 ml(s)	
		(· · ·)	

Initial Pressure (psig): 0.56

Final Pressure (psig): 3.58

Canister Dilution Factor: 1.20

CAS #	Compound	Result µg/m³	MRL µg/m ³	Result ppbV	MRL ppbV	Data Qualifier
7783-06-4	Hydrogen Sulfide	ND	8.4	ND	6.0	
463-58-1	Carbonyl Sulfide	ND	15	ND	6.0	
74-93-1	Methyl Mercaptan	ND	12	ND	6.0	
75-08-1	Ethyl Mercaptan	ND	15	ND	6.0	
75-18-3	Dimethyl Sulfide	ND	15	ND	6.0	
75-15-0	Carbon Disulfide	ND	9.3	ND	3.0	
75-33-2	Isopropyl Mercaptan	ND	19	ND	6.0	
75-66-1	tert-Butyl Mercaptan	ND	22	ND	6.0	
107-03-9	n-Propyl Mercaptan	ND	19	ND	6.0	
624-89-5	Ethyl Methyl Sulfide	ND	19	ND	6.0	
110-02-1	Thiophene	ND	21	ND	6.0	
513-44-0	Isobutyl Mercaptan	ND	22	ND	6.0	
352-93-2	Diethyl Sulfide	ND	22	ND	6.0	
109-79-5	n-Butyl Mercaptan	ND	22	ND	6.0	
624-92-0	Dimethyl Disulfide	ND	12	ND	3.0	
616-44-4	3-Methylthiophene	ND	24	ND	6.0	
110-01-0	Tetrahydrothiophene	ND	22	ND	6.0	
638-02-8	2,5-Dimethylthiophene	ND	28	ND	6.0	
872-55-9	2-Ethylthiophene	ND	28	ND	6.0	
110-81-6	Diethyl Disulfide	ND	15	ND	3.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.			
Client Sample ID:	523LF-SU	CAS Project ID: P1302212		
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P1302212-00		
Test Code:	ASTM D 5504-08	Date Collected: 5/23/13		
Instrument ID:	Agilent 7890A/GC22/SCD	Time Collected: 14:55		
Analyst:	Mike Conejo	Date Received: 5/24/13		
Sample Type:	6.0 L Summa Canister	Date Analyzed: 5/29/13		
Test Notes:		Time Analyzed: 10:40		
Container ID:	AS00313	Volume(s) Analyzed: 1.0	ml(s)	

Initial Pressure (psig): 0.60

Final Pressure (psig): 3.75

Canister Dilution Factor: 1.21

CAS #	Compound	Result ug/m ³	MRL ug/m ³	Result ppbV	MRL ppbV	Data Oualifier
7783-06-4	Hydrogen Sulfide	ND	8.4	ND	6.1	
463-58-1	Carbonyl Sulfide	ND	15	ND	6.1	
74-93-1	Methyl Mercaptan	ND	12	ND	6.1	
75-08-1	Ethyl Mercaptan	ND	15	ND	6.1	
75-18-3	Dimethyl Sulfide	ND	15	ND	6.1	
75-15-0	Carbon Disulfide	ND	9.4	ND	3.0	
75-33-2	Isopropyl Mercaptan	ND	19	ND	6.1	
75-66-1	tert-Butyl Mercaptan	ND	22	ND	6.1	
107-03-9	n-Propyl Mercaptan	ND	19	ND	6.1	
624-89-5	Ethyl Methyl Sulfide	ND	19	ND	6.1	
110-02-1	Thiophene	ND	21	ND	6.1	
513-44-0	Isobutyl Mercaptan	ND	22	ND	6.1	
352-93-2	Diethyl Sulfide	ND	22	ND	6.1	
109-79-5	n-Butyl Mercaptan	ND	22	ND	6.1	
624-92-0	Dimethyl Disulfide	ND	12	ND	3.0	
616-44-4	3-Methylthiophene	ND	24	ND	6.1	
110-01-0	Tetrahydrothiophene	ND	22	ND	6.1	
638-02-8	2,5-Dimethylthiophene	ND	28	ND	6.1	
872-55-9	2-Ethylthiophene	ND	28	ND	6.1	
110-81-6	Diethyl Disulfide	ND	15	ND	3.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

.

Page 1 of 1

Client:	Stantec Consulting Services, Inc.			
Client Sample ID:	523HS-SU		CAS Project ID: P13	02212
Client Project ID:	Bridgeton Landfill / 182608005		CAS Sample ID: P13	02212-003
Test Code:	ASTM D 5504-08		Date Collected: 5/23	3/13
Instrument ID:	Agilent 7890A/GC22/SCD		Time Collected: 15:1	15
Analyst:	Mike Conejo		Date Received: 5/24	4/13
Sample Type:	6.0 L Summa Canister		Date Analyzed: 5/29	9/13
Test Notes:			Time Analyzed: 10:5	58
Container ID:	AS00068		Volume(s) Analyzed:	1.0 ml(s)
	Initial Pressure (psig): 0.58	Final Pressure (psig):	3.53	

Canister Dilution Factor: 1.19

CAS #	Compound	Result µg/m ³	MRL µg/m ³	Result ppbV	MRL ppbV	Data Oualifier
7783-06-4	Hydrogen Sulfide	ND	8.3	ND	6.0	
463-58-1	Carbonyl Sulfide	ND	15	ND	6.0	
74-93-1	Methyl Mercaptan	ND	12	ND	6.0	
75-08-1	Ethyl Mercaptan	ND	15	ND	6.0	
75-18-3	Dimethyl Sulfide	ND	15	ND	6.0	
75-15-0	Carbon Disulfide	ND	9.3	ND	3.0	
75-33-2	Isopropyl Mercaptan	ND	19	ND	6.0	
75-66-1	tert-Butyl Mercaptan	ND	22	ND	6.0	
107-03-9	n-Propyl Mercaptan	ND	19	ND	6.0	
624-89-5	Ethyl Methyl Sulfide	ND	19	ND	6.0	
110-02-1	Thiophene	ND	20	ND	6.0	
513-44-0	Isobutyl Mercaptan	ND	22	ND	6.0	
352-93-2	Diethyl Sulfide	ND	22	ND	6.0	
109-79-5	n-Butyl Mercaptan	ND	22	ND	6.0	
624-92-0	Dimethyl Disulfide	ND	11	ND	3.0	
616-44-4	3-Methylthiophene	ND	24	ND	6.0	
110-01-0	Tetrahydrothiophene	ND	21	ND	6.0	
638-02-8	2,5-Dimethylthiophene	ND	27	ND	6.0	
872-55-9	2-Ethylthiophene	ND	27	ND	6.0	
110-81-6	Diethyl Disulfide	ND	15	ND	3.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	523Blank-SU
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	ASTM D 5504-08
Instrument ID:	Agilent 7890A/GC22/SCD
Analyst:	Mike Conejo
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00198

CAS Project ID: P1302212 CAS Sample ID: P1302212-004

Date Collected: 5/23/13 Time Collected: 10:15 Date Received: 5/24/13 Date Analyzed: 5/29/13 Time Analyzed: 11:16 Volume(s) Analyzed: 1.0 ml(s)

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	µg/m³	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	Method Blank
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	ASTM D 5504-08
Instrument ID:	Agilent 7890A/GC22/SCD
Analyst:	Mike Conejo
Sample Type:	6.0 L Summa Canister
Test Notes:	

CAS Project ID: P1302212 CAS Sample ID: P130529-MB

Date Collected: NA Time Collected: NA Date Received: NA Date Analyzed: 5/29/13 Time Analyzed: 07:55 Volume(s) Analyzed: 1.0 ml(s)

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m ³	µg∕m³	ppbV	ppbV	Qualifier
7783-06-4	Hydrogen Sulfide	ND	7.0	ND	5.0	
463-58-1	Carbonyl Sulfide	ND	12	ND	5.0	
74-93-1	Methyl Mercaptan	ND	9.8	ND	5.0	
75-08-1	Ethyl Mercaptan	ND	13	ND	5.0	
75-18-3	Dimethyl Sulfide	ND	13	ND	5.0	
75-15-0	Carbon Disulfide	ND	7.8	ND	2.5	
75-33-2	Isopropyl Mercaptan	ND	16	ND	5.0	
75-66-1	tert-Butyl Mercaptan	ND	18	ND	5.0	
107-03-9	n-Propyl Mercaptan	ND	16	ND	5.0	
624-89-5	Ethyl Methyl Sulfide	ND	16	ND	5.0	
110-02-1	Thiophene	ND	17	ND	5.0	
513-44-0	Isobutyl Mercaptan	ND	18	ND	5.0	
352-93-2	Diethyl Sulfide	ND	18	ND	5.0	
109-79-5	n-Butyl Mercaptan	ND	18	ND	5.0	
624-92-0	Dimethyl Disulfide	ND	9.6	ND	2.5	
616-44-4	3-Methylthiophene	ND	20	ND	5.0	
110-01-0	Tetrahydrothiophene	ND	18	ND	5.0	
638-02-8	2,5-Dimethylthiophene	ND	23	ND	5.0	
872-55-9	2-Ethylthiophene	ND	23	ND	5.0	
110-81-6	Diethyl Disulfide	ND	12	ND	2.5	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	Lab Control Sample
Client Project ID:	Bridgeton Landfill / 182608005

CAS Project ID: P1302212 CAS Sample ID: P130529-LCS

Test Code:	ASTM D 5504-08	Date Collected: NA		
Instrument ID:	Agilent 7890A/GC22/SCD	Date Received: NA		
Analyst:	Mike Conejo	Date Analyzed: 5/29/13		
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: NA	A ml(s)	
Test Notes:				

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		ppbV	ppbV		Limits	Qualifier
7783-06-4	Hydrogen Sulfide	2,050	2,420	118	63-140	
463-58-1	Carbonyl Sulfide	2,020	2,260	112	63-138	
74-93-1	Methyl Mercaptan	1,890	2,180	115	63-144	

- - - -

- - - - - - - - - - -

Page	1	of 4
------	---	------

Client: Client Sample ID:	Stantec Consulting Services, Inc. 523GN-SU				
Client Project ID:	Bridgeton Landfill / 182608005				
Test Code:	EPA TO-15				
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9				
Analyst:	John Rice				
Sample Type:	6.0 L Summa Canister				
Test Notes:					
Container ID:	AS00432				

CAS Project ID: P1302212 CAS Sample ID: P1302212-001

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): 0.56

Final Pressure (psig): 3.58

Canister Dilution Factor: 1.20

CAS #	Compound	Result ug/m ³	MRL ug/m ³	Result ppbV	MRL ppbV	Data Oualifier
115-07-1	Propene	1.0	0.60	0.58	0.35	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.1	0.60	0.43	0.12	
74-87-3	Chloromethane	ND	0.60	ND	0.29	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.60	ND	0.086	
75-01-4	Vinyl Chloride	ND	0.60	ND	0.23	
106-99-0	1,3-Butadiene	ND	0.60	ND	0.27	
74-83-9	Bromomethane	ND	0.60	ND	0.15	
75-00-3	Chloroethane	ND	0.60	ND	0.23	
64-17-5	Ethanol	ND	6.0	ND	3.2	
75-05-8	Acetonitrile	ND	0.60	ND	0.36	
107-02-8	Acrolein	ND	2.4	ND	1.0	
67-64-1	Acetone	ND	6.0	ND	2.5	
75-69-4	Trichlorofluoromethane	1.1	0.60	0.20	0.11	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	6.0	ND	2.4	
107-13-1	Acrylonitrile	ND	0.60	ND	0.28	
75-35-4	1,1-Dichloroethene	ND	0.60	ND	0.15	
75-09-2	Methylene Chloride	1.0	0.60	0.30	0.17	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.60	ND	0.19	
76-13-1	Trichlorotrifluoroethane	ND	0.60	ND	0.078	
75-15-0	Carbon Disulfide	ND	6.0	ND	1.9	
156-60-5	trans-1,2-Dichloroethene	ND	0.60	ND	0.15	
75-34-3	1,1-Dichloroethane	ND	0.60	ND	0.15	
1634-04-4	Methyl tert-Butyl Ether	ND	0.60	ND	0.17	
108-05-4	Vinyl Acetate	ND	6.0	ND	1.7	
78-93-3	2-Butanone (MEK)	ND	6.0	ND	2.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 2 of 4

Client: Client Sample ID:	Stantec Consulting Services, Inc.				
Client Project ID:	Bridgeton Landfill / 182608005				
Test Code:	EPA TO-15				
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9				
Analyst:	John Rice				
Sample Type:	6.0 L Summa Canister				
Test Notes:					
Container ID:	AS00432				

CAS Project ID: P1302212 CAS Sample ID: P1302212-001

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): 0.56

Final Pressure (psig): 3.58

Canister Dilution Factor: 1.20

CAS #	Compound	Result	MRL	Result pphV	MRL pphV	Data Qualifier
156-59-2	cis-1.2-Dichloroethene	ND	<u>0.60</u>	ND	0.15	Quanner
141-78-6	Ethyl Acetate	ND	1.2	ND	0.33	
110-54-3	n-Hexane	ND	0.60	ND	0.17	
67-66-3	Chloroform	ND	0.60	ND	0.12	
109-99-9	Tetrahydrofuran (THF)	ND	0.60	ND	0.20	
107-06-2	1,2-Dichloroethane	ND	0.60	ND	0.15	
71-55-6	1,1,1-Trichloroethane	ND	0.60	ND	0.11	
71-43-2	Benzene	ND	0.60	ND	0.19	
56-23-5	Carbon Tetrachloride	ND	0.60	ND	0.095	
110-82-7	Cyclohexane	ND	1.2	ND	0.35	
78-87-5	1,2-Dichloropropane	ND	0.60	ND	0.13	
75-27-4	Bromodichloromethane	ND	0.60	ND	0.090	
79-01-6	Trichloroethene	ND	0.60	ND	0.11	
123-91-1	1,4-Dioxane	ND	0.60	ND	0.17	
80-62-6	Methyl Methacrylate	ND	1.2	ND	0.29	
142-82-5	n-Heptane	ND	0.60	ND	0.15	
10061-01-5	cis-1,3-Dichloropropene	ND	0.60	ND	0.13	
108-10-1	4-Methyl-2-pentanone	ND	0.60	ND	0.15	
10061-02-6	trans-1,3-Dichloropropene	ND	0.60	ND	0.13	
79-00-5	1,1,2-Trichloroethane	ND	0.60	ND	0.11	
108-88-3	Toluene	1.1	0.60	0.29	0.16	
591-78-6	2-Hexanone	ND	0.60	ND	0.15	
124-48-1	Dibromochloromethane	ND	0.60	ND	0.070	
106-93-4	1,2-Dibromoethane	ND	0.60	ND	0.078	
123-86-4	n-Butyl Acetate	2.3	0.60	0.49	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Client Sample ID: 523GN-SU

Client:

Test Code:

Test Notes:

Analyst:

Instrument ID:

RESULTS OF ANALYSIS

Page 3 of 4

CAS Project ID: P1302212 CAS Sample ID: P1302212-001

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

John Rice 6.0 L Summa Canister Sample Type:

Client Project ID: Bridgeton Landfill / 182608005

EPA TO-15

Stantec Consulting Services, Inc.

Container ID: AS00432

> Initial Pressure (psig): 0.56

Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9

Final Pressure (psig): 3.58

Canister Dilution Factor: 1.20

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.60	ND	0.13	
127-18-4	Tetrachloroethene	ND	0.60	ND	0.089	
108-90-7	Chlorobenzene	ND	0.60	ND	0.13	
100-41-4	Ethylbenzene	ND	0.60	ND	0.14	
179601-23-1	m,p-Xylenes	ND	1.2	ND	0.28	
75-25-2	Bromoform	ND	0.60	ND	0.058	
100-42-5	Styrene	ND	0.60	ND	0.14	
95-47-6	o-Xylene	ND	0.60	ND	0.14	
111-84-2	n-Nonane	ND	0.60	ND	0.11	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.60	ND	0.087	
98-82-8	Cumene	ND	0.60	ND	0.12	
80-56-8	alpha-Pinene	ND	0.60	ND	0.11	
103-65-1	n-Propylbenzene	ND	0.60	ND	0.12	
622-96-8	4-Ethyltoluene	ND	0.60	ND	0.12	
108-67-8	1,3,5-Trimethylbenzene	ND	0.60	ND	0.12	
95-63-6	1,2,4-Trimethylbenzene	ND	0.60	ND	0.12	
100-44-7	Benzyl Chloride	ND	0.60	ND	0.12	
541-73-1	1,3-Dichlorobenzene	ND	0.60	ND	0.10	
106-46-7	1,4-Dichlorobenzene	ND	0.60	ND	0.10	
95-50-1	1,2-Dichlorobenzene	ND	0.60	ND	0.10	
5989-27-5	d-Limonene	ND	0.60	ND	0.11	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.60	ND	0.062	
120-82-1	1,2,4-Trichlorobenzene	ND	0.60	ND	0.081	
91-20-3	Naphthalene	ND	0.60	ND	0.11	
87-68-3	Hexachlorobutadiene	ND	0.60	ND	0.056	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 4 of 4

Client:	Stantec Consulting Services, Inc.		
Client Sample ID:	523GN-SU	CAS Project ID: P12	302212
Client Project ID:	ect ID: Bridgeton Landfill / 182608005 CAS Sample ID: P13		302212-001
	Tentatively Identified Compound	S	
Test Code:	EPA TO-15	Date Collected: 5/2	23/13
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 5/24/13	
Analyst:	John Rice	Date Analyzed: 5/30/13	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:	Т		
Container ID:	AS00432		

0.56

Initial Pressure (psig):

Final Pressure (psig): 3.58

Canister Dilution Factor: 1.20

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m ³	Qualifier
9.65	Trimethylsilanol	4.3	
16.08	Hexamethylcyclotrisiloxane	17	
18.40	Unidentified Compound	25	
18.71	2-Ethyl-1-hexanol	3.3	
19.46	n-Nonanal	3.3	
19.86	2-Ethylhexylacetate	3.5	
19.99	Unidentified Siloxane	12	
21.47	Unidentified Siloxane	2.3	

T = Analyte is a tentatively identified compound, result is estimated.

Page	1	of 4
------	---	------

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	523LF-SU
Client Project ID:	Bridgeton Landfill / 182608005
Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00313

CAS Project ID: P1302212 CAS Sample ID: P1302212-002

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): 0.60

Final Pressure (psig): 3.75

Canister Dilution Factor: 1.21

CAS #	Compound	Result µg/m ³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	0.61	ND	0.35	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.2	0.61	0.44	0.12	
74-87-3	Chloromethane	ND	0.61	ND	0.29	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.61	ND	0.087	
75-01-4	Vinyl Chloride	ND	0.61	ND	0.24	
106-99-0	1,3-Butadiene	ND	0.61	ND	0.27	
74-83-9	Bromomethane	ND	0.61	ND	0.16	
75-00-3	Chloroethane	ND	0.61	ND	0.23	
64-17-5	Ethanol	ND	6.1	ND	3.2	
75-05-8	Acetonitrile	2.3	0.61	1.4	0.36	
107-02-8	Acrolein	ND	2.4	ND	1.1	
67-64-1	Acetone	ND	6.1	ND	2.5	
75-69-4	Trichlorofluoromethane	1.1	0.61	0.20	0.11	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	6.1	ND	2.5	
107-13-1	Acrylonitrile	ND	0.61	ND	0.28	
75-35-4	1,1-Dichloroethene	ND	0.61	ND	0.15	
75-09-2	Methylene Chloride	ND	0.61	ND	0.17	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.61	ND	0.19	
76-13-1	Trichlorotrifluoroethane	ND	0.61	ND	0.079	
75-15-0	Carbon Disulfide	ND	6.1	ND	1.9	
156-60-5	trans-1,2-Dichloroethene	ND	0.61	ND	0.15	
75-34-3	1,1-Dichloroethane	ND	0.61	ND	0.15	
1634-04-4	Methyl tert-Butyl Ether	ND	0.61	ND	0.17	
108-05-4	Vinyl Acetate	ND	6.1	ND	1.7	
78-93-3	2-Butanone (MEK)	ND	6.1	ND	2.1	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 2 of 4

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	523LF-SU
Client Project ID:	Bridgeton Landfill / 182608005
Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00313

CAS Project ID: P1302212 CAS Sample ID: P1302212-002

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): 0.60

Final Pressure (psig): 3.75

Canister Dilution Factor: 1.21

CAS #	Compound	Result ug/m ³	MRL ug/m³	Result ppbV	MRL ppbV	Data Oualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.61	ND	0.15	
141-78-6	Ethyl Acetate	ND	1.2	ND	0.34	
110-54-3	n-Hexane	ND	0.61	ND	0.17	
67-66-3	Chloroform	ND	0.61	ND	0.12	
109-99-9	Tetrahydrofuran (THF)	ND	0.61	ND	0.21	
107-06-2	1,2-Dichloroethane	ND	0.61	ND	0.15	
71-55-6	1,1,1-Trichloroethane	ND	0.61	ND	0.11	
71-43-2	Benzene	ND	0.61	ND	0.19	
56-23-5	Carbon Tetrachloride	ND	0.61	ND	0.096	
110-82-7	Cyclohexane	ND	1.2	ND	0.35	
78-87-5	1,2-Dichloropropane	ND	0.61	ND	0.13	
75-27-4	Bromodichloromethane	ND	0.61	ND	0.090	
79-01-6	Trichloroethene	ND	0.61	ND	0.11	
123-91-1	1,4-Dioxane	ND	0.61	ND	0.17	
80-62-6	Methyl Methacrylate	ND	1.2	ND	0.30	
142-82-5	n-Heptane	ND	0.61	ND	0.15	
10061-01-5	cis-1,3-Dichloropropene	ND	0.61	ND	0.13	
108-10-1	4-Methyl-2-pentanone	ND	0.61	ND	0.15	
10061-02-6	trans-1,3-Dichloropropene	ND	0.61	ND	0.13	
79-00-5	1,1,2-Trichloroethane	ND	0.61	ND	0.11	
108-88-3	Toluene	1.2	0.61	0.33	0.16	
591-78-6	2-Hexanone	ND	0.61	ND	0.15	
124-48-1	Dibromochloromethane	ND	0.61	ND	0.071	
106-93-4	1,2-Dibromoethane	ND	0.61	ND	0.079	
123-86-4	n-Butyl Acetate	ND	0.61	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 4

Client:Stantec Consulting Services, Inc.Client Sample ID:523LF-SUClient Project ID:Bridgeton Landfill / 182608005Test Code:EPA TO-15

Instrument ID:Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9Analyst:John RiceSample Type:6.0 L Summa CanisterTest Notes:Container ID:AS00313

CAS Project ID: P1302212 CAS Sample ID: P1302212-002

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): 0.60

Final Pressure (psig): 3.75

Canister Dilution Factor: 1.21

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	µg∕m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.61	ND	0.13	
127-18-4	Tetrachloroethene	ND	0.61	ND	0.089	
108-90-7	Chlorobenzene	ND	0.61	ND	0.13	
100-41-4	Ethylbenzene	ND	0.61	ND	0.14	
179601-23-1	m,p-Xylenes	ND	1.2	ND	0.28	
75-25-2	Bromoform	ND	0.61	ND	0.059	
100-42-5	Styrene	ND	0.61	ND	0.14	
95-47-6	o-Xylene	ND	0.61	ND	0.14	
111-84-2	n-Nonane	ND	0.61	ND	0.12	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.61	ND	0.088	
98-82-8	Cumene	ND	0.61	ND	0.12	
80-56-8	alpha-Pinene	ND	0.61	ND	0.11	
103-65-1	n-Propylbenzene	ND	0.61	ND	0.12	
622-96-8	4-Ethyltoluene	ND	0.61	ND	0.12	
108-67-8	1,3,5-Trimethylbenzene	ND	0.61	ND	0.12	
95-63-6	1,2,4-Trimethylbenzene	ND	0.61	ND	0.12	
100-44-7	Benzyl Chloride	ND	0.61	ND	0.12	
541-73-1	1,3-Dichlorobenzene	ND	0.61	ND	0.10	
106-46-7	1,4-Dichlorobenzene	ND	0.61	ND	0.10	
95-50-1	1,2-Dichlorobenzene	ND	0.61	ND	0.10	
5989-27-5	d-Limonene	ND	0.61	ND	0.11	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.61	ND	0.063	
120-82-1	1,2,4-Trichlorobenzene	ND	0.61	ND	0.082	
91-20-3	Naphthalene	ND	0.61	ND	0.12	
87-68-3	Hexachlorobutadiene	ND	0.61	ND	0.057	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 4 of 4

Client:	Stantec Consulting Services, Inc.		
Client Sample ID:	523LF-SU	CAS Project ID: P1302212	
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P1302212-002	
	Tentatively Identified Co	ompounds	
Test Code:	EPA TO-15	Date Collected: 5/23/13	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 5/24/13	
Analyst:	John Rice	Date Analyzed: 5/30/13	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)	
Test Notes:	Т		
Container ID:	AS00313		
	Initial Pressure (psig): 0.60 Final I	Pressure (psig): 3.75	

Canister Dilution Factor: 1.21

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m ³	Qualifier
16.08	Hexamethylcyclotrisiloxane	16	
18.40	Unidentified Compound	21	
19.46	n-Nonanal	2.4	
19.99	Unidentified Siloxane	12	
20.38	n-Decanal	2.6	

T = Analyte is a tentatively identified compound, result is estimated.

Page	1	of 4
------	---	------

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	523HS-SU
Client Project ID:	Bridgeton Landfill / 182608005
Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00068

CAS Project ID: P1302212 CAS Sample ID: P1302212-003

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): 0.58

Final Pressure (psig): 3.53

Canister Dilution Factor: 1.19

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	0.60	ND	0.35	
75-71-8	Dichlorodifluoromethane (CFC 12)	2.1	0.60	0.43	0.12	
74-87-3	Chloromethane	ND	0.60	ND	0.29	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.60	ND	0.085	
75-01-4	Vinyl Chloride	ND	0.60	ND	0.23	
106-99-0	1,3-Butadiene	ND	0.60	ND	0.27	
74-83-9	Bromomethane	ND	0.60	ND	0.15	
75-00-3	Chloroethane	ND	0.60	ND	0.23	
64-17-5	Ethanol	ND	6.0	ND	3.2	
75-05-8	Acetonitrile	4.0	0.60	2.4	0.35	
107-02-8	Acrolein	ND	2.4	ND	1.0	
67-64-1	Acetone	ND	6.0	ND	2.5	
75-69-4	Trichlorofluoromethane	1.1	0.60	0.19	0.11	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	6.0	ND	2.4	
107-13-1	Acrylonitrile	ND	0.60	ND	0.27	
75-35-4	1,1-Dichloroethene	ND	0.60	ND	0.15	
75-09-2	Methylene Chloride	ND	0.60	ND	0.17	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.60	ND	0.19	
76-13-1	Trichlorotrifluoroethane	ND	0.60	ND	0.078	
75-15-0	Carbon Disulfide	ND	6.0	ND	1.9	
156-60-5	trans-1,2-Dichloroethene	ND	0.60	ND	0.15	
75-34-3	1,1-Dichloroethane	ND	0.60	ND	0.15	
1634-04-4	Methyl tert-Butyl Ether	ND	0.60	ND	0.17	
108-05-4	Vinyl Acetate	ND	6.0	ND	1.7	
78-93-3	2-Butanone (MEK)	ND	6.0	ND	2.0	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 2 of 4

Client: Client Sample ID:	Stantec Consulting Services, Inc. 523HS-SU
Client Project ID:	Bridgeton Landfill / 182608005
Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00068

CAS Project ID: P1302212 CAS Sample ID: P1302212-003

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): 0.58

Final Pressure (psig): 3.53

Canister Dilution Factor: 1.19

CAS #	Compound	Result ug/m ³	MRL ug/m ³	Result ppbV	MRL ppbV	Data Oualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.60	ND	0.15	<u>(</u>
141-78-6	Ethyl Acetate	ND	1.2	ND	0.33	
110-54-3	n-Hexane	ND	0.60	ND	0.17	
67-66-3	Chloroform	ND	0.60	ND	0.12	
109-99-9	Tetrahydrofuran (THF)	ND	0.60	ND	0.20	
107-06-2	1,2-Dichloroethane	ND	0.60	ND	0.15	
71-55-6	1,1,1-Trichloroethane	ND	0.60	ND	0.11	
71-43-2	Benzene	ND	0.60	ND	0.19	
56-23-5	Carbon Tetrachloride	ND	0.60	ND	0.095	
110-82-7	Cyclohexane	ND	1.2	ND	0.35	
78-87-5	1,2-Dichloropropane	ND	0.60	ND	0.13	
75-27-4	Bromodichloromethane	ND	0.60	ND	0.089	
79-01-6	Trichloroethene	ND	0.60	ND	0.11	
123-91-1	1,4-Dioxane	ND	0.60	ND	0.17	
80-62-6	Methyl Methacrylate	ND	1.2	ND	0.29	
142-82-5	n-Heptane	ND	0.60	ND	0.15	
10061-01-5	cis-1,3-Dichloropropene	ND	0.60	ND	0.13	
108-10-1	4-Methyl-2-pentanone	ND	0.60	ND	0.15	
10061-02-6	trans-1,3-Dichloropropene	ND	0.60	ND	0.13	
79-00-5	1,1,2-Trichloroethane	ND	0.60	ND	0.11	
108-88-3	Toluene	ND	0.60	ND	0.16	
591-78-6	2-Hexanone	ND	0.60	ND	0.15	
124-48-1	Dibromochloromethane	ND	0.60	ND	0.070	
106-93-4	1,2-Dibromoethane	ND	0.60	ND	0.077	
123-86-4	n-Butyl Acetate	ND	0.60	ND	0.13	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3 of 4

Client:Stantec Consulting Services, Inc.Client Sample ID:523HS-SUClient Project ID:Bridgeton Landfill / 182608005Test Code:EPA TO-15Instrument ID:Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9Analyst:John RiceSample Type:6.0 L Summa CanisterTest Notes:Container ID:AS00068

CAS Project ID: P1302212 CAS Sample ID: P1302212-003

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): 0.58

Final Pressure (psig): 3.53

Canister Dilution Factor: 1.19

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.60	ND	0.13	
127-18-4	Tetrachloroethene	ND	0.60	ND	0.088	
108-90-7	Chlorobenzene	ND	0.60	ND	0.13	
100-41-4	Ethylbenzene	ND	0.60	ND	0.14	
179601-23-1	m,p-Xylenes	ND	1.2	ND	0.27	
75-25-2	Bromoform	ND	0.60	ND	0.058	
100-42-5	Styrene	ND	0.60	ND	0.14	
95-47-6	o-Xylene	ND	0.60	ND	0.14	
111-84-2	n-Nonane	ND	0.60	ND	0.11	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.60	ND	0.087	
98-82-8	Cumene	ND	0.60	ND	0.12	
80-56-8	alpha-Pinene	ND	0.60	ND	0.11	
103-65-1	n-Propylbenzene	ND	0.60	ND	0.12	
622-96-8	4-Ethyltoluene	ND	0.60	ND	0.12	
108-67-8	1,3,5-Trimethylbenzene	ND	0.60	ND	0.12	
95-63-6	1,2,4-Trimethylbenzene	ND	0.60	ND	0.12	
100-44-7	Benzyl Chloride	ND	0.60	ND	0.11	
541-73-1	1,3-Dichlorobenzene	ND	0.60	ND	0.099	
106-46-7	1,4-Dichlorobenzene	ND	0.60	ND	0.099	
95-50-1	1,2-Dichlorobenzene	ND	0.60	ND	0.099	
5989-27-5	d-Limonene	ND	0.60	ND	0.11	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.60	ND	0.062	
120-82-1	1,2,4-Trichlorobenzene	ND	0.60	ND	0.080	
91-20-3	Naphthalene	ND	0.60	ND	0.11	
87-68-3	Hexachlorobutadiene	ND	0.60	ND	0.056	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 4 of 4

Client:	Stantec Consulting Services, Inc.				
Client Sample ID:	523HS-SU		CAS Project ID: P1	302212	
Client Project ID:	Bridgeton Landfill / 182608005		CAS Sample ID: P1	302212-003	
	Tentatively Identif	fied Compounds			
Test Code:	EPA TO-15		Date Collected: 5/2	23/13	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9)	Date Received: 5/24/13		
Analyst:	John Rice		Date Analyzed: 5/3	30/13	
Sample Type:	6.0 L Summa Canister	Vol	lume(s) Analyzed:	1.00 Liter(s)	
Test Notes:	Т				
Container ID:	AS00068				
	Initial Pressure (psig): 0.58	Final Pressure (psig):	3.53		
			Canister D	ilution Factor: 1.19	

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m³	Qualifier
16.08	Hexamethylcyclotrisiloxane	2.6	
19.46	n-Nonanal	5.5	
19.98	Unidentified Siloxane	2.8	

T = Analyte is a tentatively identified compound, result is estimated.

Page 1	of 4
--------	------

Client:Stantec Consulting Services, Inc.Client Sample ID:523Blank-SUClient Project ID:Bridgeton Landfill / 182608005Test Code:EPA TO-15Instrument ID:Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9Analyst:John RiceSample Type:6.0 L Summa CanisterTest Notes:Container ID:AS00198

CAS Project ID: P1302212 CAS Sample ID: P1302212-004

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.50	ND	0.20	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	5.0	ND	2.0	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 2 of 4	Page	2	of	4
-------------	------	---	----	---

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	523Blank-SU
Client Project ID:	Bridgeton Landfill / 182608005
Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00198

CAS Project ID: P1302212 CAS Sample ID: P1302212-004

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.00

CAS #	Compound	Result ug/m ³	MRL ug/m ³	Result ppbV	MRL ppbV	Data Oualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	C
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.50	ND	0.080	
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.50	ND	0.093	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 3	of 4
--------	------

Client:Stantec Consulting Services, Inc.Client Sample ID:523Blank-SUClient Project ID:Bridgeton Landfill / 182608005

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister
Test Notes:	
Container ID:	AS00198

CAS Project ID: P1302212 CAS Sample ID: P1302212-004

Date Collected: 5/23/13 Date Received: 5/24/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: 1.00 Liter(s)

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m ³	µg∕m³	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Page 4 of 4

Client:	Stantec Consulting Services, Inc.				
Client Sample ID:	le ID: 523Blank-SU CAS Project ID: P1302212				
Client Project ID:	t ID: Bridgeton Landfill / 182608005 CAS Sample ID: P1302212		302212-004		
	Tentatively Identified Com	pounds			
Test Code:	EPA TO-15	Date Collected: 5/2	Date Collected: 5/23/13		
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: 5/2	Date Received: 5/24/13		
Analyst:	John Rice	Date Analyzed: 5/3	30/13		
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)		
Test Notes:	Т				
Container ID:	AS00198				

Canister Dilution Factor: 1.00

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m ³	Qualifier
9.65	Trimethylsilanol	5.9	
13.35	Hexamethyldisiloxane	5.2	
16.08	Hexamethylcyclotrisiloxane	11	
17.05	Octamethyltrisiloxane	10	
18.40	Unidentified Compound	150	
19.16	Unidentified Siloxane	15	
19.99	Unidentified Siloxane	110	
20.69	Unidentified Siloxane	8.3	
21.47	Unidentified Siloxane	24	
22.06	Unidentified Siloxane	7.0	
23.05	Unidentified Siloxane	4.3	

T = Analyte is a tentatively identified compound, result is estimated.

.

RESULTS OF ANALYSIS

Page 1 of 4

Client:	Stantec Consulting Services, Inc.				
Client Sample ID:	Method Blank	CAS Project ID: P1302212			
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P130530-MB			
Test Code:	EPA TO-15	Date Collected: NA			
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA			
Analyst:	John Rice	Date Analyzed: 5/30/13			
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Lite	er(s)		
Test Notes:					

.

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
		µg/m³	µg/m³	ppbV	ppbV	Qualifier
115-07-1	Propene	ND	0.50	ND	0.29	
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	0.50	ND	0.10	
74-87-3	Chloromethane	ND	0.50	ND	0.24	
76-14-2	1,2-Dichloro-1,1,2,2- tetrafluoroethane (CFC 114)	ND	0.50	ND	0.072	
75-01-4	Vinyl Chloride	ND	0.50	ND	0.20	
106-99-0	1,3-Butadiene	ND	0.50	ND	0.23	
74-83-9	Bromomethane	ND	0.50	ND	0.13	
75-00-3	Chloroethane	ND	0.50	ND	0.19	
64-17-5	Ethanol	ND	5.0	ND	2.7	
75-05-8	Acetonitrile	ND	0.50	ND	0.30	
107-02-8	Acrolein	ND	2.0	ND	0.87	
67-64-1	Acetone	ND	5.0	ND	2.1	
75-69-4	Trichlorofluoromethane	ND	0.50	ND	0.089	
67-63-0	2-Propanol (Isopropyl Alcohol)	ND	5.0	ND	2.0	
107-13-1	Acrylonitrile	ND	0.50	ND	0.23	
75-35-4	1,1-Dichloroethene	ND	0.50	ND	0.13	
75-09-2	Methylene Chloride	ND	0.50	ND	0.14	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	ND	0.50	ND	0.16	
76-13-1	Trichlorotrifluoroethane	ND	0.50	ND	0.065	
75-15-0	Carbon Disulfide	ND	5.0	ND	1.6	
156-60-5	trans-1,2-Dichloroethene	ND	0.50	ND	0.13	
75-34-3	1,1-Dichloroethane	ND	0.50	ND	0.12	
1634-04-4	Methyl tert-Butyl Ether	ND	0.50	ND	0.14	
108-05-4	Vinyl Acetate	ND	5.0	ND	1.4	
78-93-3	2-Butanone (MEK)	ND	5.0	ND	1.7	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

.

.

RESULTS OF ANALYSIS

Page 2 of 4

Client:	Stantec Consulting Services, Inc.	
Client Sample ID:	Method Blank	CAS Project ID
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID
Test Code:	EPA TO-15	Date Collected
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received
Analyst:	John Rice	Date Analyzed
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed
Test Notes:		

: P1302212 : P130530-MB

l: NA l: NA l: 5/30/13 1.00 Liter(s) :

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
	-	μg/m ³	µg/m³	ppbV	ppbV	Qualifier
156-59-2	cis-1,2-Dichloroethene	ND	0.50	ND	0.13	
141-78-6	Ethyl Acetate	ND	1.0	ND	0.28	
110-54-3	n-Hexane	ND	0.50	ND	0.14	
67-66-3	Chloroform	ND	0.50	ND	0.10	
109-99-9	Tetrahydrofuran (THF)	ND	0.50	ND	0.17	
107-06-2	1,2-Dichloroethane	ND	0.50	ND	0.12	
71-55-6	1,1,1-Trichloroethane	ND	0.50	ND	0.092	
71-43-2	Benzene	ND	0.50	ND	0.16	
56-23-5	Carbon Tetrachloride	ND	0.50	ND	0.080	
110-82-7	Cyclohexane	ND	1.0	ND	0.29	
78-87-5	1,2-Dichloropropane	ND	0.50	ND	0.11	
75-27-4	Bromodichloromethane	ND	0.50	ND	0.075	
79-01-6	Trichloroethene	ND	0.50	ND	0.093	
123-91-1	1,4-Dioxane	ND	0.50	ND	0.14	
80-62-6	Methyl Methacrylate	ND	1.0	ND	0.24	
142-82-5	n-Heptane	ND	0.50	ND	0.12	
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ND	0.11	
108-10-1	4-Methyl-2-pentanone	ND	0.50	ND	0.12	
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ND	0.11	
79-00-5	1,1,2-Trichloroethane	ND	0.50	ND	0.092	
108-88-3	Toluene	ND	0.50	ND	0.13	
591-78-6	2-Hexanone	ND	0.50	ND	0.12	
124-48-1	Dibromochloromethane	ND	0.50	ND	0.059	
106-93-4	1,2-Dibromoethane	ND	0.50	ND	0.065	
123-86-4	n-Butyl Acetate	ND	0.50	ND	0.11	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Client Sample ID: Method Blank

Client Project ID: Bridgeton Landfill / 182608005

Stantec Consulting Services, Inc.

Client:

RESULTS OF ANALYSIS

Page 3 of 4

CAS Project ID: P1302212 CAS Sample ID: P130530-MB

Test Code:	EPA TO-15	Date Collected: N	А
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA	
Analyst:	John Rice	Date Analyzed: 5/30/13	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

Canister Dilution Factor: 1.00

		Result	MRL	Result	MRL	Data
CAS #	Compound	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
111-65-9	n-Octane	ND	0.50	ND	0.11	
127-18-4	Tetrachloroethene	ND	0.50	ND	0.074	
108-90-7	Chlorobenzene	ND	0.50	ND	0.11	
100-41-4	Ethylbenzene	ND	0.50	ND	0.12	
179601-23-1	m,p-Xylenes	ND	1.0	ND	0.23	
75-25-2	Bromoform	ND	0.50	ND	0.048	
100-42-5	Styrene	ND	0.50	ND	0.12	
95-47-6	o-Xylene	ND	0.50	ND	0.12	
111-84-2	n-Nonane	ND	0.50	ND	0.095	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.50	ND	0.073	
98-82-8	Cumene	ND	0.50	ND	0.10	
80-56-8	alpha-Pinene	ND	0.50	ND	0.090	
103-65-1	n-Propylbenzene	ND	0.50	ND	0.10	
622-96-8	4-Ethyltoluene	ND	0.50	ND	0.10	
108-67-8	1,3,5-Trimethylbenzene	ND	0.50	ND	0.10	
95-63-6	1,2,4-Trimethylbenzene	ND	0.50	ND	0.10	
100-44-7	Benzyl Chloride	ND	0.50	ND	0.097	
541-73-1	1,3-Dichlorobenzene	ND	0.50	ND	0.083	
106-46-7	1,4-Dichlorobenzene	ND	0.50	ND	0.083	
95-50-1	1,2-Dichlorobenzene	ND	0.50	ND	0.083	
5989-27-5	d-Limonene	ND	0.50	ND	0.090	
96-12-8	1,2-Dibromo-3-chloropropane	ND	0.50	ND	0.052	
120-82-1	1,2,4-Trichlorobenzene	ND	0.50	ND	0.067	
91-20-3	Naphthalene	ND	0.50	ND	0.095	
87-68-3	Hexachlorobutadiene	ND	0.50	ND	0.047	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

RESULTS OF ANALYSIS

Page 4 of 4

Client:	Stantec Consulting Services, Inc.	
Client Sample ID:	Method Blank	CAS Project ID: P1302212
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P130530-MB
	Tentatively Identified Co	npounds
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA
Analyst:	John Rice	Date Analyzed: 5/30/13
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 1.00 Liter(s)
Test Notes:		

.

Canister Dilution Factor: 1.00

GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m ³	Qualifier
	No Compounds Detected		

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Project ID:Bridgeton Landfill / 182608005

CAS Project ID: P1302212

Test Code:	EPA TO-15
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9
Analyst:	John Rice
Sample Type:	6.0 L Summa Canister(s)
Test Notes:	

Date(s) Collected: 5/23/13 Date(s) Received: 5/24/13 Date(s) Analyzed: 5/30/13

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	CAS Sample ID	Percent	Percent	Percent	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P130530-MB	90	102	113	70-130	
Lab Control Sample	P130530-LCS	92	102	119	70-130	
523GN-SU	P1302212-001	95	100	111	70-130	
523LF-SU	P1302212-002	96	99	111	70-130	
523HS-SU	P1302212-003	92	100	110	70-130	
523Blank-SU	P1302212-004	91	101	116	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

Page 1 of 3

Client:	Stantec Consulting Services, Inc.			
Client Sample ID:	Lab Control Sample	CAS Project ID: P	1302212	
Client Project ID:	Bridgeton Landfill / 182608005	005 CAS Sample ID: P1305.		
Test Code:	EPA TO-15	Date Collected: N	A	
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA		
Analyst:	John Rice	Date Analyzed: 5/	/30/13	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	0.125 Liter(s)	
Test Notes:				

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
115-07-1	Propene	204	186	91	58-139	
75-71-8	Dichlorodifluoromethane (CFC 12)	202	172	85	63-115	
74-87-3	Chloromethane	196	142	72	58-122	
76 14 2	1,2-Dichloro-1,1,2,2-			02	65 115	
/0-14-2	tetrafluoroethane (CFC 114)	206	191	95	03-115	
75-01-4	Vinyl Chloride	200	158	79	64-122	
106-99-0	1,3-Butadiene	210	169	80	57-141	
74-83-9	Bromomethane	200	167	84	68-122	
75-00-3	Chloroethane	202	162	80	66-120	
64-17-5	Ethanol	958	694	72	58-126	
75-05-8	Acetonitrile	202	156	77	64-136	
107-02-8	Acrolein	204	169	83	58-129	
67-64-1	Acetone	1,040	768	74	60-114	
75-69-4	Trichlorofluoromethane	210	177	84	62-107	
67-63-0	2-Propanol (Isopropyl Alcohol)	396	278	70	54-118	
107-13-1	Acrylonitrile	206	174	84	72-143	
75-35-4	1,1-Dichloroethene	218	198	91	69-119	
75-09-2	Methylene Chloride	212	156	74	64-113	
107-05-1	3-Chloro-1-propene (Allyl Chloride)	214	182	85	59-131	
76-13-1	Trichlorotrifluoroethane	212	207	98	69-117	
75-15-0	Carbon Disulfide	208	167	80	65-115	
156-60-5	trans-1,2-Dichloroethene	202	175	87	70-126	
75-34-3	1,1-Dichloroethane	206	175	85	68-116	
1634-04-4	Methyl tert-Butyl Ether	204	193	95	69-120	
108-05-4	Vinyl Acetate	988	822	83	58-160	
78-93-3	2-Butanone (MEK)	212	184	87	70-127	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

Page 2 of 3

Client:	Stantec Consulting Services, Inc.			
Client Sample ID:	Lab Control Sample	CAS Project ID: P1302212		
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P130530-LCS		
Test Code:	EPA TO-15	Date Collected: NA		
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA		
Analyst:	John Rice	Date Analyzed: 5/30/13		
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)		
Test Notes:				

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
156-59-2	cis-1,2-Dichloroethene	214	184	86	70-119	
141-78-6	Ethyl Acetate	412	329	80	72-129	
110-54-3	n-Hexane	206	166	81	63-115	
67-66-3	Chloroform	222	188	85	68-110	
109-99-9	Tetrahydrofuran (THF)	208	169	81	60-126	
107-06-2	1,2-Dichloroethane	208	186	89	69-118	
71-55-6	1,1,1-Trichloroethane	204	191	94	68-120	
71-43-2	Benzene	208	162	78	69-117	
56-23-5	Carbon Tetrachloride	212	215	101	65-134	
110-82-7	Cyclohexane	402	353	88	69-114	
78-87-5	1,2-Dichloropropane	204	174	85	70-116	
75-27-4	Bromodichloromethane	204	188	92	71-126	
79-01-6	Trichloroethene	198	199	101	71-119	
123-91-1	1,4-Dioxane	206	209	101	72-126	
80-62-6	Methyl Methacrylate	414	418	101	75-136	
142-82-5	n-Heptane	202	180	89	70-117	
10061-01-5	cis-1,3-Dichloropropene	196	202	103	75-132	
108-10-1	4-Methyl-2-pentanone	210	177	84	70-133	
10061-02-6	trans-1,3-Dichloropropene	218	209	96	78-136	
79-00-5	1,1,2-Trichloroethane	202	197	98	72-119	
108-88-3	Toluene	208	197	95	65-116	
591-78-6	2-Hexanone	228	204	89	62-132	
124-48-1	Dibromochloromethane	216	244	113	66-140	
106-93-4	1,2-Dibromoethane	208	223	107	69-130	
123-86-4	n-Butyl Acetate	228	188	82	63-136	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

Page 3 of 3

Client:	Stantec Consulting Services, Inc.			
Client Sample ID:	Lab Control Sample	CAS Project ID: P1302212		
Client Project ID:	Bridgeton Landfill / 182608005	CAS Sample ID: P130530-LCS		
Test Code:	EPA TO-15	Date Collected: NA		
Instrument ID:	Tekmar AUTOCAN/Agilent 5973inert/6890N/MS9	Date Received: NA		
Analyst:	John Rice	Date Analyzed: 5/30/13		
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)		
Test Notes:				

					CAS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		$\mu g/m^3$	μg/m³		Limits	Qualifier
111-65-9	n-Octane	206	182	88	66-118	
127-18-4	Tetrachloroethene	190	201	106	63-123	
108-90-7	Chlorobenzene	208	205	99	66-118	
100-41-4	Ethylbenzene	206	206	100	66-119	
179601-23-1	m,p-Xylenes	412	408	99	64-118	
75-25-2	Bromoform	216	246	114	64-140	
100-42-5	Styrene	208	241	116	68-132	
95-47-6	o-Xylene	200	197	99	65-120	
111-84-2	n-Nonane	202	181	90	64-117	
79-34-5	1,1,2,2-Tetrachloroethane	198	180	91	63-128	
98-82-8	Cumene	196	203	104	65-121	
80-56-8	alpha-Pinene	192	195	102	66-123	
103-65-1	n-Propylbenzene	198	199	101	65-121	
622-96-8	4-Ethyltoluene	204	219	107	64-122	
108-67-8	1,3,5-Trimethylbenzene	208	216	104	64-125	
95-63-6	1,2,4-Trimethylbenzene	200	218	109	64-131	
100-44-7	Benzyl Chloride	206	198	96	67-146	
541-73-1	1,3-Dichlorobenzene	206	232	113	64-130	
106-46-7	1,4-Dichlorobenzene	212	224	106	61-124	
95-50-1	1,2-Dichlorobenzene	204	215	105	63-126	
5989-27-5	d-Limonene	206	221	107	62-133	
96-12-8	1,2-Dibromo-3-chloropropane	202	243	120	62-155	
120-82-1	1,2,4-Trichlorobenzene	200	230	115	59-146	
91-20-3	Naphthalene	178	197	111	56-143	
87-68-3	Hexachlorobutadiene	208	235	113	58-133	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

.

LABORATORY REPORT

June 3, 2013

Deborah Gray Stantec Consulting Services, Inc. 1500 Lake Shore Drive Suite 100 Columbus, OH 43204

RE: Bridgeton Landfill / 182608005

Dear Deborah:

Enclosed are the results of the samples submitted to our laboratory on May 24, 2013. All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

ha Henningsen Jaman

By Samantha Henningsen at 3:46 pm, Jun 03, 2013

Samantha Henningsen Project Manager

Client:	Stantec Consulting Services, Inc.
Project:	Bridgeton Landfill / 182608005

Service Request No: P1302207

CASE NARRATIVE

Samples were received intact under chain of custody at the Houston, TX facility on May 24,2013, where the samples were dispersed to the Simi Valley, CA facility.

The samples were received in Simi Valley intact under chain of custody on May 25, 2013 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Polynuclear Aromatic Hydrocarbon Analysis

The high volume PUF/XAD-2 samples were analyzed for polynuclear aromatic hydrocarbons (PAHs). The extracts were analyzed according to the methodology outlined in EPA Method TO-13A using combined gas chromatography/mass spectrometry (GC/MS). This method is not included on the laboratory's DoD-ELAP scope of accreditation.

The upper control criterion was exceeded for various analytes in both the Laboratory Control Sample (LCS) and Duplicate Laboratory Control Sample (DLCS). The analytes in question were not detected in the associated field samples. Since the error associated with the elevated recovery equates to a high bias, the sample data has not been significantly affected. The data has been flagged accordingly. No corrective action was required.

The relative percent difference (RPD) control criterion was exceeded for benzo(a)pyrene as measured in the Laboratory Control Sample (LCS) and Duplicate Laboratory Control Sample (DLCS). The corresponding laboratory data have been flagged accordingly.

NELAC requirements for compliance with EPA TO-13A state a duplicate sample must be analyzed. However, this is dependent upon the client submitting a secondary sample for extraction and analysis. Sample extraction was performed at the laboratory's off-site extraction facility located at 2360 Shasta Way, Suite G, Simi Valley, CA 93065.

Dioxins and Furans Analysis

The analysis for dioxins and furans by EPA method TO-9A was run at the ALS HRMS Houston, TX facility. Results were reported under separate project number P1302212, issued directly by the Houston laboratory on June 3, 2013.

Use of Columbia Analytical Services, Inc. dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Columbia Analytical Services, Inc. dba ALS Environmental - Simi Valley

Certifications, Accreditations, and Registrations

Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L11-203
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp- services/labcert/labcert.htm	2012039
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	494864
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	CA200007
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 12-3
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01527201 2-2
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at www.caslab.com, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

.

DETAIL SUMMARY REPORT

Client:	Stantec Consult	ing Servic	ces, Inc.		Service Request: P1302207
Project ID:	Bridgeton Land	fill / 1826	08005		
Date Received:	5/25/2013				i Vol
Time Received:	10.40				
Time Received.	10.40		Date	Time	-13A - PAH Scar -9A - Dioxins and
Client Sample ID	Lab Code	Matrix	Collected	Collected	
522Blank PAH	P1302207-001	Air	5/22/2013	15:15	Х
522Blank DF	P1302207-002	Air	5/22/2013	15:15	Х
522LF - DF	P1302207-003	Air	5/23/2013	11:10	Х
522LF - PAH	P1302207-004	Air	5/23/2013	11:11	Х
522HS - DF	P1302207-005	Air	5/23/2013	12:09	Х
522HS - PAH	P1302207-006	Air	5/23/2013	12:09	Х

.

	Relinquished by: (Signature)	Helinquished by: TSighature	Tier II (Results + QC Summaries)	Tier I - Results (Default if not specified)	Doon of Hissel		MEASE NO		482-54725	SIZHS - DF		522LE- PAN	71275 - JL		SIZ BLANK DE	522BLANK PAN		Client Sample ID	deb. gray \$ STA	Email Address for Result Reporting	Fairing Fairing Fairing	DES GRAY	Project Mananer	ISON LAKE SWAR	Company Name & Address (Reporting International Internationa International International Internationa International International International Internationa	Fax (805) 526-7270	Phone (805) 526-7161	2655 Park Center Drive, Suite A Simi Valley, California 93065	A Columbia
and a feature of the second										12		8	8				D Number C	aboratory	NTEC.C				43204	DRIVE	ormation)			ņ	
	Det 0	Date	Tier	Ter						1212	-		122/13			21/22/	ollected	Date	Con-						الأسكار ر			Ai	1
	12313	е: П	IV (Data Valic	III (Decisite			CR		20:2	2:03		2 2 2 2 2	16:00		51:51	15:15	Collected	Time			6.000							' - Chain	
1 HC .	2.302	ne:	uc α Calibration Sum fation Package) 10% S			(FAH)	(J14)	 No. of the second se		NN.		and and a	NΑ	and the second	and a	NA	(Bar code # - AC, SC, etc.)	Canister ID		ampler (Drint & Cim)	S A	³ .O. # / Billing Inform	281	Project Number	Project Name	1 Day (100%) 2 Da	Requested Turnarc	of Custody	
Language of the manufacture of t		Received by: (Signatu	mattes)//eu	2		SUSP	er Genu		b 501	1901		1057	3501		-	Z'A	(Bar code #-	Flow Controller ID	Lava /		MA	nation	200800	DixETON		y (75%) 3 Day (50°	ound Time in Busin	Record & Ar	
		re)	d Kelling	5/24/13 104		PCTE D	2 DETU		44-020	10-16-03		110-XH	10-17-03	*	110212	47-144	Start Pressure	Canister		le ce				LANDE	1	%) 4 Day (35%)	ness Days (Surc	nalytical Se	
			thnest	Oan -Gel		 V RE	LNED			ZA			ND	**************************************	BLANK	FIELD	End Pressure "Hg/psig	Canister	a de					1 Section		5 Day (25%) 10	harges) please	rvice Requ	
) Dat		Dat	EDD required	pucks 6		 2KBC	un - u	3	222	M. C.Y.	6	768.72	362.00		4	01	Sample Volume	8	s 							Day-Standar	circle	lest	
124/13		e:	Yes / No			 n O	s r V	 	N N T	55 25		or L) and		Ên.									Analysis	SAM	d Contact			
BOS		ime:	5 () ()	NO 61		7 4 L				EPA .		EPG -				600 7								Method	ANY 7 CH.	P1205	CAS Project	Page	
Temperature 2/ °C	5/12405441	8079 1009,0000	Project Requirements (MRLs, QAPP)			2VVA-			N W	709a		21 21 21 21 21 21 21 21 21 21 21 21 21 2	099	of 1	2	M.				Preservative or	e.g. Actual					FOR	No	of	

Columbia Analytical Services*

11000	Sample Acceptance Che	eck Form				
Client	: Stantec Consulting Services, Inc.	Work order:	P1302207			
Project	Bridgeton Landfill / 182608005					
Sample	(s) received on: 5/24/13 Date	e opened: <u>5/24/13</u>	by:	SHEN	NINGS	EN
Note: This	form is used for <u>all</u> samples received by ALS. The use of this form for custody seals is	s strictly meant to indicate pres	sence/absence and n	ot as an ir	ndication	of
compliance	e or nonconformity. Thermal preservation and pH will only be evaluated either at the re-	equest of the client and/or as re-	equired by the metho	od/SOP. Yes	No	N/A
1	Were sample containers properly marked with client sample ID?			X		
2	Container(s) supplied by ALS?			X		
3	Did sample containers arrive in good condition?				X	
4	Were chain-of-custody papers used and filled out?			X		
5	Did sample container labels and/or tags agree with custody papers?			X		
6	Was sample volume received adequate for analysis?			X		
7	Are samples within specified holding times?			X		
8	Was proper temperature (thermal preservation) of cooler at receipt	adhered to?		X		
	Cooler Temperature: 6° C Blank Temperature: ° C	Gel	Packs			
9	Was a trip blank received?			X		
10	Were custody seals on outside of cooler/Box?				X	
	Location of seal(s)?		Sealing Lid?			X
	Were signature and date included?					X
	Were seals intact?					X
	Were custody seals on outside of sample container?				X	
	Location of seal(s)?		Sealing Lid?			X
	Were signature and date included?					X
	Were seals intact?					X
11	Do containers have appropriate preservation, according to method	l/SOP or Client specified	1 information?			X
	Is there a client indication that the submitted samples are pH preserve	/ed?				X
	Were <u>VOA vials</u> checked for presence/absence of air bubbles?					X
	Does the client/method/SOP require that the analyst check the sample	e pH and <u>if necessary</u> alt	er it?			X
12	Tubes: Are the tubes capped and intact?					X
	Do they contain moisture?					X
13	Badges: Are the badges properly capped and intact?					X
	Are dual bed badges separated and individually ca	pped and intact?				X

Lab Sample ID	Container Description	Required pH *	Received pH	Adjusted pH	VOA Headspace (Presence/Absence)	Receipt / Preservation Comments
P1302207-001.01	PUF/XAD-2/Filter (High Vol)					
P1302207-002.01	PUF/Filter (High Vol)					
P1302207-003.01	PUF/Filter (High Vol)					
P1302207-004.01	PUF/XAD-2/Filter (High Vol)					outter jar lid broken
P1302207-005.01	PUF/Filter (High Vol)					
P1302207-006.01	PUF/XAD-2/Filter (High Vol)					

Explain any discrepancies: (include lab sample ID numbers):

Rec'd 2 PUFs without jars and broken upon receipt by client

Rec'd 1 PUF with jar broken upon receipt at laboratory

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

- - - - - - - -

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:522Blank PAHClient Project ID:Bridgeton Landfill / 182608005

Test Code:	EPA TO-13A Modified
Instrument ID:	HP 5890II+/HP5972A/MS15
Analyst:	Madeleine Dangazyan
Sampling Media:	PUF/XAD-2/Filter (Hi_Vol) Cartridge
Test Notes:	

CAS Project ID: P1302207 CAS Sample ID: P1302207-001

Date Collected:	5/22/13
Date Received:	5/25/13
Date Extracted:	5/28/13
Date Analyzed:	5/30/13
Final Volume:	1.0 ml
Volume Sampled:	NA Liter(s)

.

Compound	Result	Result	MRL	Result	MRL	Data
	µg/Cartridge	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
Naphthalene	< 5.0	NA	NA	NA	NA	
Acenaphthylene	< 0.50	NA	NA	NA	NA	
Acenaphthene	< 0.50	NA	NA	NA	NA	
Fluorene	< 0.50	NA	NA	NA	NA	
Phenanthrene	< 0.50	NA	NA	NA	NA	
Anthracene	< 0.50	NA	NA	NA	NA	
Fluoranthene	< 0.50	NA	NA	NA	NA	
Pyrene	< 0.50	NA	NA	NA	NA	
Benz(a)anthracene	< 0.50	NA	NA	NA	NA	
Chrysene	< 0.50	NA	NA	NA	NA	
Benzo(b)fluoranthene	< 0.50	NA	NA	NA	NA	L
Benzo(k)fluoranthene	< 0.50	NA	NA	NA	NA	L
Benzo(a)pyrene	< 0.50	NA	NA	NA	NA	L
Indeno(1,2,3-cd)pyrene	< 0.50	NA	NA	NA	NA	L
Dibenz(a,h)anthracene	< 0.50	NA	NA	NA	NA	L
Benzo(g,h,i)perylene	< 0.50	NA	NA	NA	NA	L
	Compound Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	Compound Result μ g/Cartridge Naphthalene < 5.0	CompoundResultResult $\mu g/Cartridge$ $\mu g/m^3$ Naphthalene< 5.0	CompoundResultResultMRL $\mu g/Cartridge$ $\mu g/m^3$ $\mu g/m^3$ Naphthalene< 5.0	CompoundResultResultMRLResult $\mu g/Cartridge$ $\mu g/m^3$ $\mu g/m^3$ $ppbV$ Naphthalene < 5.0 NANANAAcenaphthylene < 0.50 NANANAAcenaphthene < 0.50 NANANAFluorene < 0.50 NANANAPhenanthrene < 0.50 NANANAPhenanthrene < 0.50 NANANAPhenanthrene < 0.50 NANANAFluoranthene < 0.50 NANANAPyrene < 0.50 NANANABenza(a)anthracene < 0.50 NANANABenzo(b)fluoranthene < 0.50 NANANABenzo(k)fluoranthene < 0.50 NANANABenzo(a)pyrene < 0.50 NANANADibenz(a,h)anthracene < 0.50 NANANABenzo(g,h,i)perylene < 0.50 NANANANaNANANANANABenzo(g,h,i)perylene < 0.50 NANANA	CompoundResultResultMRLResultMRLMRL $\mu g/Cartridge$ $\mu g/m^3$ $\mu g/m^3$ $p p b V$ $p p b V$ Naphthalene < 5.0 NANANANAAcenaphthylene < 0.50 NANANANAAcenaphthene < 0.50 NANANANAFluorene < 0.50 NANANANAPhenanthrene < 0.50 NANANANAPhenanthrene < 0.50 NANANANAFluoranthene < 0.50 NANANANAPyrene < 0.50 NANANANAPyrene < 0.50 NANANANABenz(a)anthracene < 0.50 NANANANABenzo(b)fluoranthene < 0.50 NANANANABenzo(a)pyrene < 0.50 NANANANABenzo(a)pyrene < 0.50 NANANANABenzo(a)pyrene < 0.50 NANANANABenzo(a,h)anthracene < 0.50 NANANANABenzo(g,h,i)perylene < 0.50 <td< td=""></td<>

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

L = Laboratory control sample recovery outside the specified limits, results may be biased high.

NA = Not applicable.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:522LF - PAHClient Project ID:Bridgeton Landfill / 182608005

Test Code:	EPA TO-13A Modified
Instrument ID:	HP 5890II+/HP5972A/MS15
Analyst:	Madeleine Dangazyan
Sampling Media:	PUF/XAD-2/Filter (Hi_Vol) Cartridge
Test Notes:	

CAS Project ID: P1302207 CAS Sample ID: P1302207-004

Date Collected:	5/23/13
Date Received:	5/25/13
Date Extracted:	5/28/13
Date Analyzed:	5/30/13
Final Volume:	1.0 ml
Volume Sampled:	368730 Liter(s)

.

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Cartridge	μg/m³	μg/m³	ppbV	ppbV	Qualifier
91-20-3	Naphthalene	16	0.043	0.014	0.0082	0.0026	
208-96-8	Acenaphthylene	< 0.50	ND	0.0014	ND	0.00022	
83-32-9	Acenaphthene	0.61	0.0017	0.0014	0.00026	0.00022	
86-73-7	Fluorene	1.0	0.0027	0.0014	0.00040	0.00020	
85-01-8	Phenanthrene	3.9	0.011	0.0014	0.0015	0.00019	
120-12-7	Anthracene	< 0.50	ND	0.0014	ND	0.00019	
206-44-0	Fluoranthene	1.0	0.0028	0.0014	0.00034	0.00016	
129-00-0	Pyrene	< 0.50	ND	0.0014	ND	0.00016	
56-55-3	Benz(a)anthracene	< 0.50	ND	0.0014	ND	0.00015	
218-01-9	Chrysene	< 0.50	ND	0.0014	ND	0.00015	
205-99-2	Benzo(b)fluoranthene	< 0.50	ND	0.0014	ND	0.00013	L
207-08-9	Benzo(k)fluoranthene	< 0.50	ND	0.0014	ND	0.00013	L
50-32-8	Benzo(a)pyrene	< 0.50	ND	0.0014	ND	0.00013	L
193-39-5	Indeno(1,2,3-cd)pyrene	< 0.50	ND	0.0014	ND	0.00012	L
53-70-3	Dibenz(a,h)anthracene	< 0.50	ND	0.0014	ND	0.00012	L
191-24-2	Benzo(g,h,i)perylene	< 0.50	ND	0.0014	ND	0.00012	L

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

L = Laboratory control sample recovery outside the specified limits, results may be biased high.

.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Sample ID:522HS - PAHClient Project ID:Bridgeton Landfill / 182608005

Test Code:	EPA TO-13A Modified
Instrument ID:	HP 5890II+/HP5972A/MS15
Analyst:	Madeleine Dangazyan
Sampling Media:	PUF/XAD-2/Filter (Hi_Vol) Cartridge
Test Notes:	

CAS Project ID: P1302207 CAS Sample ID: P1302207-006

Date Collected:	5/23/13
Date Received:	5/25/13
Date Extracted:	5/28/13
Date Analyzed:	5/30/13
Final Volume:	1.0 ml
Volume Sampled:	353535 Liter(s)

.

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Cartridge	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
91-20-3	Naphthalene	7.6	0.021	0.014	0.0041	0.0027	
208-96-8	Acenaphthylene	< 0.50	ND	0.0014	ND	0.00023	
83-32-9	Acenaphthene	1.3	0.0036	0.0014	0.00057	0.00022	
86-73-7	Fluorene	0.89	0.0025	0.0014	0.00037	0.00021	
85-01-8	Phenanthrene	2.3	0.0065	0.0014	0.00090	0.00019	
120-12-7	Anthracene	< 0.50	ND	0.0014	ND	0.00019	
206-44-0	Fluoranthene	0.85	0.0024	0.0014	0.00029	0.00017	
129-00-0	Pyrene	< 0.50	ND	0.0014	ND	0.00017	
56-55-3	Benz(a)anthracene	< 0.50	ND	0.0014	ND	0.00015	
218-01-9	Chrysene	< 0.50	ND	0.0014	ND	0.00015	
205-99-2	Benzo(b)fluoranthene	< 0.50	ND	0.0014	ND	0.00014	L
207-08-9	Benzo(k)fluoranthene	< 0.50	ND	0.0014	ND	0.00014	L
50-32-8	Benzo(a)pyrene	< 0.50	ND	0.0014	ND	0.00014	L
193-39-5	Indeno(1,2,3-cd)pyrene	< 0.50	ND	0.0014	ND	0.00013	L
53-70-3	Dibenz(a,h)anthracene	< 0.50	ND	0.0014	ND	0.00012	L
191-24-2	Benzo(g,h,i)perylene	< 0.50	ND	0.0014	ND	0.00013	L

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

L = Laboratory control sample recovery outside the specified limits, results may be biased high.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stantec Consulting Services, Inc.
Client Sample ID:	Method Blank
Client Project ID:	Bridgeton Landfill / 182608005

Test Code:	EPA TO-13A Modified
Instrument ID:	HP 5890II+/HP5972A/MS15
Analyst:	Madeleine Dangazyan
Sampling Media:	PUF/XAD-2/Filter (Hi_Vol) Cartridge
Test Notes:	

CAS Project ID: P1302207 CAS Sample ID: P130528-MB

Date Collected: NA Date Received: NA Date Extracted: 5/28/13 Date Analyzed: 5/30/13 Final Volume: 1.0 ml Volume Sampled: NA Liter(s)

CAS #	Compound	Result	Result	MRL	Result	MRL	Data
		µg/Cartridge	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier
91-20-3	Naphthalene	< 5.0	NA	NA	NA	NA	
208-96-8	Acenaphthylene	< 0.50	NA	NA	NA	NA	
83-32-9	Acenaphthene	< 0.50	NA	NA	NA	NA	
86-73-7	Fluorene	< 0.50	NA	NA	NA	NA	
85-01-8	Phenanthrene	< 0.50	NA	NA	NA	NA	
120-12-7	Anthracene	< 0.50	NA	NA	NA	NA	
206-44-0	Fluoranthene	< 0.50	NA	NA	NA	NA	
129-00-0	Pyrene	< 0.50	NA	NA	NA	NA	
56-55-3	Benz(a)anthracene	< 0.50	NA	NA	NA	NA	
218-01-9	Chrysene	< 0.50	NA	NA	NA	NA	
205-99-2	Benzo(b)fluoranthene	< 0.50	NA	NA	NA	NA	L
207-08-9	Benzo(k)fluoranthene	< 0.50	NA	NA	NA	NA	L
50-32-8	Benzo(a)pyrene	< 0.50	NA	NA	NA	NA	L
193-39-5	Indeno(1,2,3-cd)pyrene	< 0.50	NA	NA	NA	NA	L
53-70-3	Dibenz(a,h)anthracene	< 0.50	NA	NA	NA	NA	L
191-24-2	Benzo(g,h,i)perylene	< 0.50	NA	NA	NA	NA	L

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

L = Laboratory control sample recovery outside the specified limits, results may be biased high.

NA = Not applicable.

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:Stantec Consulting Services, Inc.Client Project ID:Bridgeton Landfill / 182608005

CAS Project ID: P1302207

Test Code:	EPA TO-13A Modified
Instrument ID:	HP 5890II+/HP5972A/MS15
Analyst:	Madeleine Dangazyan
Sampling Media:	PUF/XAD-2/Filter (Hi_Vol) Cartridge(s)
Test Notes:	

Date(s) Collected: 5/22 - 5/23/13 Date(s) Received: 5/25/13 Date(s) Extracted: 5/28/13 Date(s) Analyzed: 5/30/13

		Fluorene	-d10	Pyrene-		
Client Sample ID	CAS Sample ID	%	Acceptance	%	Acceptance	Data
		Recovered	Limits	Recovered	Limits	Qualifier
Method Blank	P130528-MB	86	60-120	109	60-120	
Lab Control Sample	P130528-LCS	78	60-120	116	60-120	
Duplicate Lab Control Sample	P130528-DLCS	82	60-120	108	60-120	
522Blank PAH	P1302207-001	84	60-120	102	60-120	
522LF - PAH	P1302207-004	72	60-120	106	60-120	
522HS - PAH	P1302207-006	76	60-120	120	60-120	

SGroup

Now part of the

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: Client Sample ID: Client Project ID:	Stantec Consulting Services, Inc. Duplicate Lab Control Sample Bridgeton Landfill / 182608005
Test Code:	EPA TO-13A Modified
Instrument ID:	HP 5890II+/HP5972A/MS15
Analyst:	Madeleine Dangazyan
Sampling Media:	PUF/XAD-2/Filter (Hi_Vol) Cartridge
Test Notes:	

CAS Project ID: P1302207 CAS Sample ID: P130528-DLCS

Date Collected: NA Date Received: NA Date Extracted: 5/28/13 Date Analyzed: 5/30/13 Volume(s) Analyzed: NA Liter(s)

		Spike Amount	Re	sult			CAS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		µg∕ml	µg/ml	µg/ml	LCS	DLCS	Limits		Limit	Qualifier
91-20-3	Naphthalene	5.00	4.17	4.27	83	85	60-120	2	20	
208-96-8	Acenaphthylene	5.00	4.36	4.02	87	80	60-120	8	23	
83-32-9	Acenaphthene	5.00	4.92	4.41	98	88	60-120	11	30	
86-73-7	Fluorene	5.00	4.45	4.12	89	82	60-120	8	21	
85-01-8	Phenanthrene	5.00	5.45	4.97	109	99	60-120	10	18	
120-12-7	Anthracene	5.00	5.32	4.70	106	94	60-120	12	17	
206-44-0	Fluoranthene	5.00	5.92	5.31	118	106	60-120	11	13	
129-00-0	Pyrene	5.00	6.01	5.47	120	109	60-120	10	13	
56-55-3	Benz(a)anthracene	5.00	5.38	5.15	108	103	60-120	5	9	
218-01-9	Chrysene	5.00	5.65	5.31	113	106	60-120	6	10	
205-99-2	Benzo(b)fluoranthene	5.00	7.18	6.60	144	132	60-120	9	24	L
207-08-9	Benzo(k)fluoranthene	5.00	7.43	7.20	149	144	60-120	3	18	L
50-32-8	Benzo(a)pyrene	5.00	7.83	6.87	157	137	60-120	14	12	L, R
193-39-5	Indeno(1,2,3-cd)pyrene	5.00	7.85	6.42	157	128	60-120	20	28	L
53-70-3	Dibenz(a,h)anthracene	5.00	8.00	7.71	160	154	60-120	4	17	L
191-24-2	Benzo(g,h,i)perylene	5.00	8.07	7.63	161	153	60-120	5	16	L

L = Laboratory control sample recovery outside the specified limits, results may be biased high.

R = Duplicate precision not met.

June 3, 2013

Service Request No: P1302207

Deborah Gray Stantec Consulting Services, Inc. 1500 Lake Shore Drive, Suite 100 Columbus, OH, 43204

Laboratory Results for: Landfill Odor Investigation

Dear Deb,

Enclosed are the results of the sample(s) submitted to our laboratory on May 24, 2013. For your reference, these analyses have been assigned our service request number P1302207.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided.

All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. In accordance to the 2009 TNI Standard, a statement on the estimated uncertainty of measurement of any quantitative analysis will be supplied upon request.

Please contact me if you have any questions. My direct line is 281-994-2970. You may also contact me via email at Nicole.Brown@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Nicole Brown Project Manager

For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com.

ADDRESS 19408 Park Row, Houston Texas 77084 USA | PHONE +1 713 266 1599 | FAX +1 713 266 0130 ALS GROUP USA, CORP. Part of the ALS Group An ALS Limited Company

Enui	ITON	nta	

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Certificate of Analysis

ALS Environmental - Houston HRMS 19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

ALS Environmental

Client: Stantec Consulting Services, Inc. **Project:** Landfill Odor Investigation Sample Matrix: Air

Service Request No.: P1302207 Date Received: 05/24/13

CASE NARRATIVE

All analyses were performed in adherence to the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II. When appropriate to the method, method blank results have been reported with each analytical test.

Sample Receipt

Three air samples were received for analysis at ALS Environmental on 05/24/13.

The samples were received at 2°C in good condition and are consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Data Validation Notes and Discussion

B flags – Method Blanks

The Method Blank EQ1300300-01 contained low levels of 1234678-HpCDD, OCDD, 23478-PeCDF and 1234678-HpCDF below the Method Reporting Limit (MRL). The associated compounds in the samples are flagged with 'B' flags.

MS/MSD

EQ1300300: Laboratory Control Spike/Duplicate Laboratory Control Spike (LCS/DLCS) samples were analyzed and reported for this extraction batch. The batch quality control criteria were met.

C flags – 2378-TCDF Confirmation

Sample 522HS - DF / P1302207-005 had a detection for 2,3,7,8-TCDF below the MRL on the initial analysis on the DB-5 column. This result is J-qualified, indicating that the result is an estimated value, and not subject to confirmation. The valid result is reported from the initial analysis and was used in the final TEQ calculation

K flags

EMPC - When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.

Detection Limits

Detection limits are calculated for each analyte in each sample by measuring the height of the noise level for each quantitation ion for the associated labeled standard. The concentration equivalent to 2.5 times the height of the noise is then calculated using the appropriate response factor and the weight of the sample. The calculated concentration equals the detection limit.

The TEQ Summary results for each sample have been calculated by ALS/Houston to include:

- WHO-2005 TEFs, The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds (M. Van den Berg et al., Toxicological Sciences 93(2):223-241, 2006)
- > Non-detected compounds are not included in the 'Total'

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS group USA Corp dba ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	DATE	TIME
P1302207-001	522Blank PAH	5/22/13	15:15
P1302207-002	522Blank DF	5/22/13	15:15
P1302207-003	522LF - DF	5/23/13	11:10
P1302207-004	522LF - PAH	5/23/13	11:11
P1302207-005	522HS - DF	5/23/13	12:09
P1302207-006	522HS - PAH	5/23/13	12:09

Laboratory Certifications 2013-2014

STATE/PROGRAM	AGENCY	CERT#	EXP DATE	CERTIFIED?
ARIZONA	AZ-DHS	AZ0725	05/27/14	Yes
ARKANSAS	ADEQ	12-035-0	06/16/13	Yes
CALIFORNIA	CA-ELAP	2452	02/28/15	Yes
DOD ELAP	A2LA	2897.01	11/30/13	Yes
FLORIDA/NELAP	FL-DOHS	E87611	06/30/13	Yes
HAWAII	HI-DOH	N/A	06/30/13	Yes
ILLINOIS/NELAP	IL-EPA	003004	10/06/13	Yes
ISO 17025	A2LA	2897.01	11/30/13	Yes
KANSAS	KS-DHE	E-10406	01/31/14	Yes
LOUISIANA/NELAP	LELAP	03048	06/30/13	Yes
LOUISIANA/NELAP	LDHH	LA120014	12/31/13	Yes
MAINE	ME-DOHS	2012017	06/05/14	Yes
MARYLAND	MDE	343	06/30/13	Yes
MICHIGAN	MIDEQ	9971	06/30/13	Yes
MINNESOTA	MDH	048-999-427	12/31/13	Yes
NEVADA	NDEP	TX014112013A	07/31/13	Yes
NEW JERSEY	NJDEP	TX008	06/30/13	Yes
NEW MEXICO	NMED-DWB	N/A	06/30/13	Yes
NEW YORK/NELAP	NY-DOH	11707	04/01/14	Yes
OKLAHOMA	OKDEQ	2012-133	08/31/13	Yes
OREGON/NELAP	ORELAP	TX200002-009	03/24/14	Yes
PENNSYLVANIA/NELAP	PLAP	004	06/30/13	Yes
SOIL IMPORT PERMIT	USDA	P330-12-00002	01/13/15	Yes
TENNESSEE	TNDEC	TN04016	06/30/13	Yes
TEXAS/NELAP	TCEQ	T104704216-12-3	06/30/13	Yes
UTAH/NELAP	UTELCP	TX014112013-2	06/30/13	Yes
WASHINGTON/NELAP	WA-Ecology	C819-12	11/14/13	Yes
WEST VIRGINIA	WVDEP	347	06/30/13	Yes

Abbreviations, Acronyms & Definitions

Cal	Calibration
Conc	CONCentration
Dioxin(s)	Polychlorinated dibenzo-p-dioxin(s)
EDL	Estimated Detection Limit
ЕМРС	Estimated Maximum Possible Concentration
Flags	Data qualifiers
Furan(s)	Polychlorinated dibenzofuran(s)
g	Grams
ICAL	Initial CALibration
ID	IDentifier
lons	Masses monitored for the analyte during data acquisition
L	Liter (s)
LCS	Laboratory Control Sample
DLCS	Duplicate Laboratory Control Sample
МВ	Method Blank
MCL	Method Calibration Limit
MDL	Method Detection Limit
mL	Milliliters
MS	Matrix Spiked sample
DMS	Duplicate Matrix Spiked sample
NO	Number of peaks meeting all identification criteria
PCDD(s)	Polychlorinated dibenzo-p-dioxin(s)
PCDF(s)	Polychlorinated dibenzofuran(s)
ppb	Parts per billion
ppm	Parts per million
ppq	Parts per quadrillion
ppt	Parts per trillion
QA	Quality Assurance
QC	Quality Control
Ratio	Ratio of areas from monitored ions for an analyte
% Rec.	Percent recovery
RPD	Relative Percent Difference
RRF	Relative Response Factor
RT	Retention Time
SDG	Sample Delivery Group
S/N	Signal-to-noise ratio
TEF	Toxicity Equivalence Factor
TEQ	Toxicity Equivalence Quotient

- **B** Indicates the associated analyte is found in the method blank, as well as in the sample.
- C Confirmation of the TCDF compound: When 2378-TCDF is detected on the DB-5 column, confirmation analyses are performed on a second column (DB-225). The results from both the DB-5 column and the DB-225 column are included in this data package. The results from the DB-225 analyses should be used to evaluate the 2378-TCDF in the samples. The confirmed result should be used in determining the TEQ value for TCDF.
- E Indicates an estimated value used when the analyte concentration exceeds the upper end of the linear calibration range.
- J Indicates an estimated value used when the analyte concentration is below the method reporting limit (MRL) and above the estimated detection limit (EDL).
- **K** EMPC When the ion abundance ratios associated with a particular compound are outside the QC limits, samples are flagged with a 'K' flag. A 'K' flag indicates an estimated maximum possible concentration for the associated compound.
- **U** Indicates the compound was analyzed and not detected
- Y Samples that had recoveries of labeled standards outside the acceptance limits are flagged with 'Y'. In all cases, the signal-to-noise ratios are greater than 10:1, making these data acceptable.
- o ND Indicates concentration is reported as 'Not Detected.'
- o **S** Peak is saturated; data not reportable.
- **Q** Lock-mass interference by ether compounds.

Dat	ALS ENV a Processing/Form	IRONMENTAL – Houst Production and Peer Rev	ton view Signatu	ures
SR# Unique ID	P1302207	DB-5	DB-225	SPB-Octyl
First	: Level - Data Process	ing - to be filled by person ge	nerating the f	orms
Date:	Analyst:	Samples:		
06/03/13	TC	-002,-003,-00.	5	
Se	cond Level - Data Rev	view — to be filled by person d	oing peer revi	ew
Date:	Analyst:	Samples:		
06/03/13	Ull	002,003,002		
	<u> </u>			

Analytical Results

ALS Environmental - Houston HRMS 19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	5/22/13 1515
Sample Matrix:	Air	Date Received:	5/24/13
Sample Name:	522Blank DF	Units:	pg
Lab Code:	P1302207-002	Basis:	NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	ТО-9А	Date Analyzed:	6/1/13 1816
Prep Method:	Method	Date Extracted:	5/28/13
Sample Amount:	1.0000	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P164237	Blank File Name:	P164230
ICAL Date:	10/29/13	Cal Ver. File Name:	P164228

	Native Analyte Results									
					Ion		Dilution			
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor			
2,3,7,8-TCDD	ND	U	1.27	10.0			1			
1,2,3,7,8-PeCDD	1.42	JK	0.441	50.0	2.16	1.000	1			
1,2,3,4,7,8-HxCDD	ND	U	0.396	50.0			1			
1,2,3,6,7,8-HxCDD	ND	U	0.336	50.0			1			
1,2,3,7,8,9-HxCDD	ND	U	0.344	50.0			1			
1,2,3,4,6,7,8-HpCDD	2.96	BJK	0.547	50.0	0.83	1.000	1			
OCDD	7.79	BJ	0.488	100	0.85	1.001	1			
2,3,7,8-TCDF	ND	U	0.374	10.0			1			
1,2,3,7,8-PeCDF	ND	U	0.183	50.0			1			
2,3,4,7,8-PeCDF	ND	U	0.196	50.0			1			
1,2,3,4,7,8-HxCDF	ND	U	0.350	50.0			1			
1,2,3,6,7,8-HxCDF	1.16	J	0.291	50.0	1.42	1.000	1			
1,2,3,7,8,9-HxCDF	ND	U	0.402	50.0			1			
2,3,4,6,7,8-HxCDF	ND	U	0.341	50.0			1			
1,2,3,4,6,7,8-HpCDF	ND	U	0.440	50.0			1			
1,2,3,4,7,8,9-HpCDF	ND	U	0.594	50.0			1			
OCDF	ND	U	1.11	100			1			
Total Tetra-Dioxins	ND	U	1.27	10.0			1			
Total Penta-Dioxins	ND	U	0.441	50.0			1			
Total Hexa-Dioxins	ND	U	0.357	50.0			1			
Total Hepta-Dioxins	ND	U	0.547	50.0			1			
Total Tetra-Furans	ND	U	0.374	10.0			1			
Total Penta-Furans	ND	U	0.189	50.0			1			
Total Hexa-Furans	1.16	J	0.342	50.0	1.42		1			
Total Hepta-Furans	ND	U	0.505	50.0			1			

Analytical Report

Stantec Consulting Group, Inc.	Service Request:	P1302207
Bridgeton Landfill/182608005	Date Collected:	5/22/13 1515
Air	Date Received:	5/24/13
522Blank DF 91302207-002	Units: Basis:	Percent NA
	Stantec Consulting Group, Inc. Bridgeton Landfill/182608005 Air 522Blank DF 91302207-002	Stantec Consulting Group, Inc.Service Request:Bridgeton Landfill/182608005Date Collected:AirDate Received:22Blank DFUnits:P1302207-002Basis:

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	TO-9A	Date Analyzed:	6/1/13 1816
Prep Method:	Method	Date Extracted:	5/28/13
Sample Amount:	1.0000	Instrument Name: GC Column:	E-HRMS-03 DB-5
Data File Name:	P164237	Blank File Name:	P164230
ICAL Date:	10/29/13	Cal Ver. File Name:	P164228

Labeled Standard Results

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	4000	2920.540	73	50-120	0.79	1.007
13C-1,2,3,7,8-PeCDD	4000	3324.995	83	50-120	1.51	1.157
13C-1,2,3,6,7,8-HxCDD	4000	3193.437	80	50-120	1.21	0.993
13C-1,2,3,4,6,7,8-HpCDD	4000	3010.439	75	40-120	1.05	1.068
13C-OCDD	8000	5773.983	72	40-120	0.88	1.150
13C-2,3,7,8-TCDF	4000	2582.772	65	50-120	0.73	0.980
13C-1,2,3,7,8-PeCDF	4000	3027.593	76	50-120	1.51	1.122
13C-1,2,3,6,7,8-HxCDF	4000	2989.162	75	50-120	0.51	0.975
13C-1,2,3,4,6,7,8-HpCDF	4000	2611.402	65	40-120	0.43	1.044
37Cl-2,3,7,8-TCDD	4000	4336.277	108	50-120	NA	1.000
13C-1,2,3,4,7,8-HxCDD	4000	4013.999	100	50-120	1.21	0.998
13C-2,3,4,7,8-PeCDF	4000	4016.148	100	50-120	1.50	1.021
13C-1,2,3,4,7,8-HxCDF	4000	4005.684	100	50-120	0.50	0.998
13C-1,2,3,4,7,8,9-HpCDF	4000	4478.669	112	40-120	0.42	1.034
13C-1,2,3,7,8,9-HxCDF	4000	3073.764	77	50-120	0.51	1.006

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	5/22/13 1515
Sample Matrix:	Air	Date Received:	5/24/13
Sample Name: Lab Code:	522Blank DF P1302207-002	Units: Basis:	pg NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:TO-9APrep Method:Method

Toxicity Equivalency Quotient

Analyta Nama	Dogult	DI	MDI	Dilution Easter	TEE	TEF - Adjusted
	Result	DL	WIKL	Factor	IEF	Concentration
2,3,7,8-TCDD	ND	1.27	10.0	1	1	
1,2,3,7,8-PeCDD	1.42	0.441	50.0	1	1	1.42
1,2,3,4,7,8-HxCDD	ND	0.396	50.0	1	0.1	
1,2,3,6,7,8-HxCDD	ND	0.336	50.0	1	0.1	
1,2,3,7,8,9-HxCDD	ND	0.344	50.0	1	0.1	
1,2,3,4,6,7,8-HpCDD	2.96	0.547	50.0	1	0.01	0.0296
OCDD	7.79	0.488	100	1	0.0003	0.00234
2,3,7,8-TCDF	ND	0.374	10.0	1	0.1	
1,2,3,7,8-PeCDF	ND	0.183	50.0	1	0.03	
2,3,4,7,8-PeCDF	ND	0.196	50.0	1	0.3	
1,2,3,4,7,8-HxCDF	ND	0.350	50.0	1	0.1	
1,2,3,6,7,8-HxCDF	1.16	0.291	50.0	1	0.1	0.116
1,2,3,7,8,9-HxCDF	ND	0.402	50.0	1	0.1	
2,3,4,6,7,8-HxCDF	ND	0.341	50.0	1	0.1	
1,2,3,4,6,7,8-HpCDF	ND	0.440	50.0	1	0.01	
1,2,3,4,7,8,9-HpCDF	ND	0.594	50.0	1	0.01	
OCDF	ND	1.11	100	1	0.0003	

Total TEQ

1.57

2005 WHO TEFs, ND = 0

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	5/23/13 1110
Sample Matrix:	Air	Date Received:	5/24/13
Sample Name:	522LF - DF	Units:	pg
Lab Code:	P1302207-003	Basis:	NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	ТО-9А	Date Analyzed:	6/1/13 1904
Prep Method:	Method	Date Extracted:	5/28/13
Sample Amount:	1.0000	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P164238	Blank File Name:	P164230
ICAL Date:	10/29/13	Cal Ver. File Name:	P164228

Native Analyte Results

					Ion		Dilution
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor
2,3,7,8-TCDD	ND	U	1.49	10.0			1
1,2,3,7,8-PeCDD	2.51	J	0.774	50.0	1.67	1.000	1
1,2,3,4,7,8-HxCDD	ND	U	0.757	50.0			1
1,2,3,6,7,8-HxCDD	ND	U	0.642	50.0			1
1,2,3,7,8,9-HxCDD	ND	U	0.656	50.0			1
1,2,3,4,6,7,8-HpCDD	12.0	BJK	0.795	50.0	0.84	1.000	1
OCDD	47.6	BJ	0.508	100	0.92	1.000	1
2,3,7,8-TCDF	ND	U	0.571	10.0			1
1,2,3,7,8-PeCDF	ND	U	0.730	50.0			1
2,3,4,7,8-PeCDF	ND	U	0.779	50.0			1
1,2,3,4,7,8-HxCDF	ND	U	0.799	50.0			1
1,2,3,6,7,8-HxCDF	1.66	JK	0.665	50.0	0.99	1.000	1
1,2,3,7,8,9-HxCDF	ND	U	0.918	50.0			1
2,3,4,6,7,8-HxCDF	ND	U	0.779	50.0			1
1,2,3,4,6,7,8-HpCDF	8.21	BJK	0.927	50.0	0.79	1.000	1
1,2,3,4,7,8,9-HpCDF	ND	U	1.26	50.0			1
OCDF	5.55	JK	1.23	100	0.56	1.004	1
Total Tetra-Dioxins	ND	U	1.49	10.0			1
Total Penta-Dioxins	2.51	J	0.774	50.0	1.67		1
Total Hexa-Dioxins	5.49	J	0.681	50.0	1.08		1
Total Hepta-Dioxins	ND	U	0.795	50.0			1
Total Tetra-Furans	ND	U	0.571	10.0			1
Total Penta-Furans	15.0	J	0.754	50.0	1.67		1
Total Hexa-Furans	12.2	J	0.781	50.0	1.13		1
Total Hepta-Furans	3.02	J	1.07	50.0	1.05		1

Analytical Report

1110
e e e e e e e e e e e e e e e e e e e

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	TO-9A	Date Analyzed:	6/1/13 1904
Prep Method:	Method	Date Extracted:	5/28/13
Sample Amount:	1.0000	Instrument Name:	E-HRMS-03 DB-5
Data File Name:	P164238	Blank File Name:	P164230
ICAL Date:	10/29/13	Cal Ver. File Name:	P164228

Labeled Standard Results

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	4000	2706.378	68	50-120	0.78	1.007
13C-1,2,3,7,8-PeCDD	4000	3008.108	75	50-120	1.52	1.157
13C-1,2,3,6,7,8-HxCDD	4000	2860.345	72	50-120	1.21	0.993
13C-1,2,3,4,6,7,8-HpCDD	4000	2781.184	70	40-120	1.06	1.069
13C-OCDD	8000	5414.447	68	40-120	0.86	1.151
13C-2,3,7,8-TCDF	4000	2465.266	62	50-120	0.74	0.980
13C-1,2,3,7,8-PeCDF	4000	2755.170	69	50-120	1.50	1.121
13C-1,2,3,6,7,8-HxCDF	4000	3026.790	76	50-120	0.51	0.975
13C-1,2,3,4,6,7,8-HpCDF	4000	2428.914	61	40-120	0.43	1.044
37Cl-2,3,7,8-TCDD	4000	4200.582	105	50-120	NA	1.001
13C-1,2,3,4,7,8-HxCDD	4000	4090.343	102	50-120	1.21	0.998
13C-2,3,4,7,8-PeCDF	4000	3855.760	96	50-120	1.50	1.021
13C-1,2,3,4,7,8-HxCDF	4000	3541.787	89	50-120	0.50	0.998
13C-1,2,3,4,7,8,9-HpCDF	4000	3000.058	75	40-120	0.41	1.034
13C-1,2,3,7,8,9-HxCDF	4000	2897.488	72	50-120	0.50	1.006

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	5/23/13 1110
Sample Matrix:	Air	Date Received:	5/24/13
Sample Name: Lab Code:	522LF - DF P1302207-003	Units: Basis:	pg NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:TO-9APrep Method:Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	ND	1.49	10.0	1	1	
1,2,3,7,8-PeCDD	2.51	0.774	50.0	1	1	2.51
1,2,3,4,7,8-HxCDD	ND	0.757	50.0	1	0.1	
1,2,3,6,7,8-HxCDD	ND	0.642	50.0	1	0.1	
1,2,3,7,8,9-HxCDD	ND	0.656	50.0	1	0.1	
1,2,3,4,6,7,8-HpCDD	12.0	0.795	50.0	1	0.01	0.120
OCDD	47.6	0.508	100	1	0.0003	0.0143
2,3,7,8-TCDF	ND	0.571	10.0	1	0.1	
1,2,3,7,8-PeCDF	ND	0.730	50.0	1	0.03	
2,3,4,7,8-PeCDF	ND	0.779	50.0	1	0.3	
1,2,3,4,7,8-HxCDF	ND	0.799	50.0	1	0.1	
1,2,3,6,7,8-HxCDF	1.66	0.665	50.0	1	0.1	0.166
1,2,3,7,8,9-HxCDF	ND	0.918	50.0	1	0.1	
2,3,4,6,7,8-HxCDF	ND	0.779	50.0	1	0.1	
1,2,3,4,6,7,8-HpCDF	8.21	0.927	50.0	1	0.01	0.0821
1,2,3,4,7,8,9-HpCDF	ND	1.26	50.0	1	0.01	
OCDF	5.55	1.23	100	1	0.0003	0.00167
		1 777 0				• • • •

Total TEQ

2.89

2005 WHO TEFs, ND = 0

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	5/23/13 1209
Sample Matrix:	Air	Date Received:	5/24/13
Sample Name:	522HS - DF	Units:	pg
Lab Code:	P1302207-005	Basis:	NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	ТО-9А	Date Analyzed:	6/1/13 1952
Prep Method:	Method	Date Extracted:	5/28/13
Sample Amount:	1.0000	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P164239	Blank File Name:	P164230
ICAL Date:	10/29/13	Cal Ver. File Name:	P164228

Native Analyte Results	
------------------------	--

			····· · · · ····· · · · · · · · · · ·				DU 4	
Analyte Name	Result	Q	EDL	MRL	Ion Ratio	RRT	Factor	
2,3,7,8-TCDD	ND	U	1.27	10.0			1	
1,2,3,7,8-PeCDD	ND	U	0.699	50.0			1	
1,2,3,4,7,8-HxCDD	1.65	JK	0.830	50.0	0.75	0.998	1	
1,2,3,6,7,8-HxCDD	1.70	J	0.702	50.0	1.31	1.000	1	
1,2,3,7,8,9-HxCDD	ND	U	0.719	50.0			1	
1,2,3,4,6,7,8-HpCDD	9.53	BJ	0.310	50.0	0.99	1.000	1	
OCDD	32.3	BJ	0.708	100	0.95	1.000	1	
2,3,7,8-TCDF	3.68	J	0.686	10.0	0.70	1.002	1	
1,2,3,7,8-PeCDF	ND	U	0.540	50.0			1	
2,3,4,7,8-PeCDF	ND	U	0.577	50.0			1	
1,2,3,4,7,8-HxCDF	1.99	JK	0.213	50.0	0.78	0.998	1	
1,2,3,6,7,8-HxCDF	2.15	J	0.177	50.0	1.33	1.000	1	
1,2,3,7,8,9-HxCDF	ND	U	0.244	50.0			1	
2,3,4,6,7,8-HxCDF	0.728	J	0.207	50.0	1.26	1.013	1	
1,2,3,4,6,7,8-HpCDF	7.12	BJ	0.894	50.0	0.91	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND	U	1.21	50.0			1	
OCDF	6.40	J	1.41	100	0.95	1.004	1	
Total Tetra-Dioxins	ND	U	1.27	10.0			1	
Total Penta-Dioxins	4.85	J	0.699	50.0	1.62		1	
Total Hexa-Dioxins	5.16	J	0.746	50.0	1.24		1	
Total Hepta-Dioxins	19.8	J	0.310	50.0	0.90		1	
Total Tetra-Furans	7.79	J	0.686	10.0	0.73		1	
Total Penta-Furans	19.0	J	0.557	50.0	1.49		1	
Total Hexa-Furans	15.8	J	0.208	50.0	1.05		1	
Total Hepta-Furans	7.12	J	1.03	50.0	0.91		1	

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	5/23/13 1209
Sample Matrix:	Air	Date Received:	5/24/13
Sample Name:	522HS - DF	Units:	Percent
Lab Code:	P1302207-005	Basis:	NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method: Prep Method:	TO-9A Method	Date Analyzed: Date Extracted:	6/1/13 1952 5/28/13
Sample Amount:	1.0000	Instrument Name:	E-HRMS-03 DB-5
Data File Name:	P164239	Blank File Name: Col Ver, File Name:	P164230

Labeled Standard Results

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	4000	2774.329	69	50-120	0.77	1.007
13C-1,2,3,7,8-PeCDD	4000	3122.209	78	50-120	1.53	1.157
13C-1,2,3,6,7,8-HxCDD	4000	3044.814	76	50-120	1.21	0.993
13C-1,2,3,4,6,7,8-HpCDD	4000	2713.849	68	40-120	1.04	1.068
13C-OCDD	8000	4779.002	60	40-120	0.87	1.151
13C-2,3,7,8-TCDF	4000	2575.915	64	50-120	0.73	0.980
13C-1,2,3,7,8-PeCDF	4000	2896.726	72	50-120	1.49	1.122
13C-1,2,3,6,7,8-HxCDF	4000	3205.815	80	50-120	0.51	0.975
13C-1,2,3,4,6,7,8-HpCDF	4000	2343.901	59	40-120	0.44	1.044
37Cl-2,3,7,8-TCDD	4000	4388.059	110	50-120	NA	1.001
13C-1,2,3,4,7,8-HxCDD	4000	4017.643	100	50-120	1.20	0.998
13C-2,3,4,7,8-PeCDF	4000	3822.639	96	50-120	1.50	1.021
13C-1,2,3,4,7,8-HxCDF	4000	3518.012	88	50-120	0.50	0.997
13C-1,2,3,4,7,8,9-HpCDF	4000	2824.235	71	40-120	0.42	1.034
13C-1,2,3,7,8,9-HxCDF	4000	3072.848	77	50-120	0.51	1.006

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	5/23/13 1209
Sample Matrix:	Air	Date Received:	5/24/13
Sample Name: Lab Code:	522HS - DF P1302207-005	Units: Basis:	pg NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:TO-9APrep Method:Method

Toxicity Equivalency Quotient

Analyte Name	Result	DL	MRL	Dilution Factor	TEF	TEF - Adjusted Concentration
2,3,7,8-TCDD	ND	1.27	10.0	1	1	
1,2,3,7,8-PeCDD	ND	0.699	50.0	1	1	
1,2,3,4,7,8-HxCDD	1.65	0.830	50.0	1	0.1	0.165
1,2,3,6,7,8-HxCDD	1.70	0.702	50.0	1	0.1	0.170
1,2,3,7,8,9-HxCDD	ND	0.719	50.0	1	0.1	
1,2,3,4,6,7,8-HpCDD	9.53	0.310	50.0	1	0.01	0.0953
OCDD	32.3	0.708	100	1	0.0003	0.00969
2,3,7,8-TCDF	3.68	0.686	10.0	1	0.1	0.368
1,2,3,7,8-PeCDF	ND	0.540	50.0	1	0.03	
2,3,4,7,8-PeCDF	ND	0.577	50.0	1	0.3	
1,2,3,4,7,8-HxCDF	1.99	0.213	50.0	1	0.1	0.199
1,2,3,6,7,8-HxCDF	2.15	0.177	50.0	1	0.1	0.215
1,2,3,7,8,9-HxCDF	ND	0.244	50.0	1	0.1	
2,3,4,6,7,8-HxCDF	0.728	0.207	50.0	1	0.1	0.0728
1,2,3,4,6,7,8-HpCDF	7.12	0.894	50.0	1	0.01	0.0712
1,2,3,4,7,8,9-HpCDF	ND	1.21	50.0	1	0.01	
OCDF	6.40	1.41	100	1	0.0003	0.00192
	-	1 77 0				

Total TEQ

1.37

2005 WHO TEFs, ND = 0

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	NA
Sample Matrix:	Air	Date Received:	NA
Sample Name: Lab Code:	Method Blank EQ1300300-01	Units: Basis:	pg NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	TO-9A	Date Analyzed:	6/1/13 1243
Prep Method:	Method	Date Extracted:	5/28/13
Sample Amount:	1.0000	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P164230	Blank File Name:	P164230
ICAL Date:	10/29/13	Cal Ver. File Name:	P164228

Native Analyte Results								
					Ion		Dilution	
Analyte Name	Result	Q	EDL	MRL	Ratio	RRT	Factor	
2,3,7,8-TCDD	ND	U	1.48	10.0			1	
1,2,3,7,8-PeCDD	ND	U	0.687	50.0			1	
1,2,3,4,7,8-HxCDD	ND	U	0.836	50.0			1	
1,2,3,6,7,8-HxCDD	ND	U	0.707	50.0			1	
1,2,3,7,8,9-HxCDD	ND	U	0.725	50.0			1	
1,2,3,4,6,7,8-HpCDD	3.69	J	0.746	50.0	0.89	1.000	1	
OCDD	11.7	J	0.681	100	0.93	1.000	1	
2,3,7,8-TCDF	ND	U	0.572	10.0			1	
1,2,3,7,8-PeCDF	ND	U	0.414	50.0			1	
2,3,4,7,8-PeCDF	1.01	JK	0.442	50.0	0.76	1.022	1	
1,2,3,4,7,8-HxCDF	ND	U	0.347	50.0			1	
1,2,3,6,7,8-HxCDF	ND	U	0.289	50.0			1	
1,2,3,7,8,9-HxCDF	ND	U	0.398	50.0			1	
2,3,4,6,7,8-HxCDF	ND	U	0.338	50.0			1	
1,2,3,4,6,7,8-HpCDF	1.68	JK	0.550	50.0	2.08	1.000	1	
1,2,3,4,7,8,9-HpCDF	ND	U	0.744	50.0			1	
OCDF	ND	U	1.56	100			1	
Total Tetra-Dioxins	ND	U	1.48	10.0			1	
Total Penta-Dioxins	ND	U	0.687	50.0			1	
Total Hexa-Dioxins	ND	U	0.751	50.0			1	
Total Hepta-Dioxins	7.42	J	0.746	50.0	1.10		1	
Total Tetra-Furans	ND	U	0.572	10.0			1	
Total Penta-Furans	ND	U	0.428	50.0			1	
Total Hexa-Furans	ND	U	0.338	50.0			1	
Total Hepta-Furans	ND	U	0.632	50.0			1	

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	NA
Sample Matrix:	Air	Date Received:	NA
Sample Name: Lab Code:	Method Blank EQ1300300-01	Units: Basis:	Percent NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	TO-9A	Date Analyzed:	6/1/13 1243
Prep Method:	Method	Date Extracted:	5/28/13
Sample Amount:	1.0000	Instrument Name:	E-HRMS-03 DB-5
Data File Name:	P164230	Blank File Name:	P164230
ICAL Date:	10/29/13	Cal Ver. File Name:	P164228

Labeled Standard Results

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	4000	2764.289	69	50-120	0.78	1.007	
13C-1,2,3,7,8-PeCDD	4000	3205.509	80	50-120	1.51	1.157	
13C-1,2,3,6,7,8-HxCDD	4000	2928.000	73	50-120	1.21	0.993	
13C-1,2,3,4,6,7,8-HpCDD	4000	2811.603	70	40-120	1.05	1.068	
13C-OCDD	8000	5578.401	70	40-120	0.87	1.151	
13C-2,3,7,8-TCDF	4000	2499.197	62	50-120	0.73	0.980	
13C-1,2,3,7,8-PeCDF	4000	2901.714	73	50-120	1.52	1.122	
13C-1,2,3,6,7,8-HxCDF	4000	2898.081	72	50-120	0.51	0.975	
13C-1,2,3,4,6,7,8-HpCDF	4000	2442.374	61	40-120	0.44	1.044	
37Cl-2,3,7,8-TCDD	4000	4540.511	114	50-120	NA	1.001	
13C-1,2,3,4,7,8-HxCDD	4000	4521.847	113	50-120	1.21	0.998	
13C-2,3,4,7,8-PeCDF	4000	4136.850	103	50-120	1.49	1.021	
13C-1,2,3,4,7,8-HxCDF	4000	3922.507	98	50-120	0.51	0.997	
13C-1,2,3,4,7,8,9-HpCDF	4000	4766.545	119	40-120	0.43	1.034	
13C-1,2,3,7,8,9-HxCDF	4000	3079.940	77	50-120	0.51	1.006	

Accuracy and Precision

ALS Environmental - Houston HRMS 19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

QA/QC Report

Client:	Stantec Consulting Group, Inc.
Project:	Bridgeton Landfill/182608005
Sample Matrix:	Air

Lab Control Sample Summary

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	TO-9A
Prep Method:	Method

Units: pg Basis: NA

Extraction Lot: 183767

Service Request: P1302207 Date Analyzed: 6/ 1/13

	Lat]	Lab Control Sample EQ1300300-02		Duplicate Lab Control Sample EQ1300300-03					
		Spike			Spike		% Rec		RPD
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
2,3,7,8-TCDD	196	200	98	195	200	98	70 - 130	<1	30
1,2,3,7,8-PeCDD	986	1000	99	967	1000	97	70 - 130	2	30
1,2,3,4,7,8-HxCDD	943	1000	94	945	1000	94	70 - 130	<1	30
1,2,3,6,7,8-HxCDD	978	1000	98	970	1000	97	70 - 130	1	30
1,2,3,7,8,9-HxCDD	910	1000	91	891	1000	89	70 - 130	2	30
1,2,3,4,6,7,8-HpCDD	888	1000	89	908	1000	91	70 - 130	2	30
OCDD	1840	2000	92	1870	2000	93	70 - 130	1	30
2,3,7,8-TCDF	180	200	90	188	200	94	70 - 130	4	30
1,2,3,7,8-PeCDF	917	1000	92	930	1000	93	70 - 130	1	30
2,3,4,7,8-PeCDF	915	1000	91	911	1000	91	70 - 130	<1	30
1,2,3,4,7,8-HxCDF	925	1000	92	884	1000	88	70 - 130	4	30
1,2,3,6,7,8-HxCDF	883	1000	88	875	1000	87	70 - 130	1	30
1,2,3,7,8,9-HxCDF	926	1000	93	904	1000	90	70 - 130	3	30
2,3,4,6,7,8-HxCDF	867	1000	87	881	1000	88	70 - 130	1	30
1,2,3,4,6,7,8-HpCDF	875	1000	88	858	1000	86	70 - 130	2	30
1,2,3,4,7,8,9-HpCDF	991	1000	99	1020	1000	102	70 - 130	3	30
OCDF	1770	2000	89	1790	2000	90	70 - 130	1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	NA
Sample Matrix:	Air	Date Received:	NA
Sample Name: Lab Code:	Lab Control Sample EQ1300300-02	Units: Basis:	pg NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	ТО-9А	Date Analyzed:	6/1/13 2039
Prep Method:	Method	Date Extracted:	5/28/13
Sample Amount:	1.0000	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P164240	Blank File Name:	P164230
ICAL Date:	10/29/13	Cal Ver. File Name:	P164228

Native Analyte Results

Analyte Name	Result Q	EDL	MRL	Ion Ratio	RRT	Dilution Factor	
2,3,7,8-TCDD	196	0.822	10.0	0.77	1.001	1	
1,2,3,7,8-PeCDD	986	0.234	50.0	1.60	1.000	1	
1,2,3,4,7,8-HxCDD	943	0.401	50.0	1.25	0.998	1	
1,2,3,6,7,8-HxCDD	978	0.340	50.0	1.25	1.000	1	
1,2,3,7,8,9-HxCDD	910	0.348	50.0	1.24	1.008	1	
1,2,3,4,6,7,8-HpCDD	888	0.114	50.0	1.02	1.000	1	
OCDD	1840	0.303	100	0.87	1.000	1	
2,3,7,8-TCDF	180	0.117	10.0	0.76	1.001	1	
1,2,3,7,8-PeCDF	917	0.335	50.0	1.58	1.000	1	
2,3,4,7,8-PeCDF	915	0.357	50.0	1.54	1.022	1	
1,2,3,4,7,8-HxCDF	925	0.266	50.0	1.22	0.998	1	
1,2,3,6,7,8-HxCDF	883	0.220	50.0	1.24	1.000	1	
1,2,3,7,8,9-HxCDF	926	0.304	50.0	1.23	1.032	1	
2,3,4,6,7,8-HxCDF	867	0.259	50.0	1.22	1.013	1	
1,2,3,4,6,7,8-HpCDF	875	1.20	50.0	1.05	1.000	1	
1,2,3,4,7,8,9-HpCDF	991	1.62	50.0	1.07	1.034	1	
OCDF	1770	0.580	100	0.89	1.004	1	
Total Tetra-Dioxins	196	0.822	10.0	0.77		1	
Total Penta-Dioxins	991	0.234	50.0	1.60		1	
Total Hexa-Dioxins	2830	0.361	50.0	1.25		1	
Total Hepta-Dioxins	888	0.114	50.0	1.02		1	
Total Tetra-Furans	180	0.117	10.0	0.76		1	
Total Penta-Furans	1850	0.347	50.0	1.51		1	
Total Hexa-Furans	3600	0.259	50.0	1.22		1	
Total Hepta-Furans	1870	1.38	50.0	1.05		1	

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	NA
Sample Matrix:	Air	Date Received:	NA
Sample Name: Lab Code:	Lab Control Sample EQ1300300-02	Units: Basis:	Percent NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	TO-9A	Date Analyzed:	6/1/13 2039
Prep Method:	Method	Date Extracted:	5/28/13
Sample Amount:	1.0000	Instrument Name: GC Column:	E-HRMS-03 DB-5
Data File Name:	P164240	Blank File Name:	P164230
ICAL Date:	10/29/13	Cal Ver. File Name:	P164228

Labeled Standard Results

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT
13C-2,3,7,8-TCDD	4000	2889.406	72	50-120	0.78	1.007
13C-1,2,3,7,8-PeCDD	4000	3234.105	81	50-120	1.51	1.157
13C-1,2,3,6,7,8-HxCDD	4000	3046.415	76	50-120	1.21	0.993
13C-1,2,3,4,6,7,8-HpCDD	4000	2787.693	70	40-120	1.03	1.068
13C-OCDD	8000	5412.047	68	40-120	0.87	1.151
13C-2,3,7,8-TCDF	4000	2574.754	64	50-120	0.73	0.980
13C-1,2,3,7,8-PeCDF	4000	2988.116	75	50-120	1.51	1.122
13C-1,2,3,6,7,8-HxCDF	4000	2843.877	71	50-120	0.50	0.975
13C-1,2,3,4,6,7,8-HpCDF	4000	2484.649	62	40-120	0.43	1.044
37Cl-2,3,7,8-TCDD	4000	4323.969	108	50-120	NA	1.000
13C-1,2,3,4,7,8-HxCDD	4000	4147.900	104	50-120	1.20	0.998
13C-2,3,4,7,8-PeCDF	4000	3917.165	98	50-120	1.50	1.021
13C-1,2,3,4,7,8-HxCDF	4000	4108.517	103	50-120	0.50	0.997
13C-1,2,3,4,7,8,9-HpCDF	4000	4231.301	106	40-120	0.43	1.034
13C-1,2,3,7,8,9-HxCDF	4000	3003.632	75	50-120	0.50	1.006
ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	NA
Sample Matrix:	Air	Date Received:	NA
Sample Name: Lab Code:	Duplicate Lab Control Sample EQ1300300-03	Units: Basis:	pg NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

ТО-9А	Date Analyzed:	6/1/13 2127
Method	Date Extracted:	5/28/13
1.0000	Instrument Name:	E-HRMS-03
	GC Column:	DB-5
P164241	Blank File Name:	P164230
10/29/13	Cal Ver. File Name:	P164228
	TO-9A Method 1.0000 P164241 10/29/13	TO-9A Date Analyzed: Method Date Extracted: 1.0000 Instrument Name: GC Column: GC Column: P164241 Blank File Name: 10/29/13 Cal Ver. File Name:

Native Analyte Results

		•		Ion		Dilution	
Analyte Name	Result Q	EDL	MRL	Ratio	RRT	Factor	
2,3,7,8-TCDD	195	0.943	10.0	0.75	1.001	1	
1,2,3,7,8-PeCDD	967	0.177	50.0	1.53	1.001	1	
1,2,3,4,7,8-HxCDD	945	0.904	50.0	1.22	0.998	1	
1,2,3,6,7,8-HxCDD	970	0.765	50.0	1.28	1.000	1	
1,2,3,7,8,9-HxCDD	891	0.783	50.0	1.18	1.008	1	
1,2,3,4,6,7,8-HpCDD	908	0.400	50.0	1.01	1.000	1	
OCDD	1870	0.797	100	0.88	1.000	1	
2,3,7,8-TCDF	188	0.528	10.0	0.77	1.000	1	
1,2,3,7,8-PeCDF	930	0.540	50.0	1.53	1.000	1	
2,3,4,7,8-PeCDF	911	0.577	50.0	1.54	1.021	1	
1,2,3,4,7,8-HxCDF	884	0.577	50.0	1.24	0.998	1	
1,2,3,6,7,8-HxCDF	875	0.479	50.0	1.24	1.000	1	
1,2,3,7,8,9-HxCDF	904	0.661	50.0	1.29	1.031	1	
2,3,4,6,7,8-HxCDF	881	0.561	50.0	1.22	1.013	1	
1,2,3,4,6,7,8-HpCDF	858	1.99	50.0	1.04	1.000	1	
1,2,3,4,7,8,9-HpCDF	1020	2.69	50.0	1.01	1.034	1	
OCDF	1790	1.29	100	0.89	1.004	1	
Total Tetra-Dioxins	196	0.943	10.0	0.75		1	
Total Penta-Dioxins	967	0.177	50.0	1.53		1	
Total Hexa-Dioxins	2810	0.813	50.0	1.22		1	
Total Hepta-Dioxins	916	0.400	50.0	0.94		1	
Total Tetra-Furans	188	0.528	10.0	0.77		1	
Total Penta-Furans	1870	0.558	50.0	1.61		1	
Total Hexa-Furans	3540	0.562	50.0	1.24		1	
Total Hepta-Furans	1890	2.29	50.0	1.04		1	

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Stantec Consulting Group, Inc.	Service Request:	P1302207
Project:	Bridgeton Landfill/182608005	Date Collected:	NA
Sample Matrix:	Air	Date Received:	NA
Sample Name: Lab Code:	Duplicate Lab Control Sample EQ1300300-03	Units: Basis:	Percent NA

Polychlorinated, Polybrominated, Brominated/Chlorinated Dibenzo-p-Dioxins, Dibenzofurans in Amb. Air

Analytical Method:	TO-9A	Date Analyzed:	6/1/13 2127
Prep Method:	Method	Date Extracted:	5/28/13
Sample Amount:	1.0000	Instrument Name:	E-HRMS-03
		GC Column:	DB-5
Data File Name:	P164241	Blank File Name:	P164230
ICAL Date:	10/29/13	Cal Ver. File Name:	P164228

Labeled Standard Results

Labeled Compounds	Spike Conc.(pg)	Conc. Found (pg)	%Rec Q	Control Limits	Ion Ratio	RRT	
13C-2,3,7,8-TCDD	4000	3166.701	79	50-120	0.77	1.007	
13C-1,2,3,7,8-PeCDD	4000	3720.440	93	50-120	1.53	1.157	
13C-1,2,3,6,7,8-HxCDD	4000	3426.896	86	50-120	1.23	0.993	
13C-1,2,3,4,6,7,8-HpCDD	4000	3183.043	80	40-120	1.04	1.068	
13C-OCDD	8000	5888.616	74	40-120	0.88	1.150	
13C-2,3,7,8-TCDF	4000	2823.616	71	50-120	0.73	0.980	
13C-1,2,3,7,8-PeCDF	4000	3317.430	83	50-120	1.51	1.122	
13C-1,2,3,6,7,8-HxCDF	4000	3191.208	80	50-120	0.51	0.975	
13C-1,2,3,4,6,7,8-HpCDF	4000	2730.384	68	40-120	0.44	1.044	
37Cl-2,3,7,8-TCDD	4000	4288.188	107	50-120	NA	1.001	
13C-1,2,3,4,7,8-HxCDD	4000	4057.382	101	50-120	1.20	0.998	
13C-2,3,4,7,8-PeCDF	4000	3941.539	99	50-120	1.50	1.021	
13C-1,2,3,4,7,8-HxCDF	4000	3986.428	100	50-120	0.51	0.997	
13C-1,2,3,4,7,8,9-HpCDF	4000	4508.872	113	40-120	0.43	1.034	
13C-1,2,3,7,8,9-HxCDF	4000	3384.611	85	50-120	0.50	1.006	

27 of 35

Chain of Custody

ALS Environmental - Houston HRMS 19408 Park Row, Suite 320, Houston, TX 77084 Phone (713)266-1599 Fax (713)266-0130 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Intra-Network Chain of Custody

2655 Park Center Drive, Suite A • Simi Valley, CA 93065 • 805-526-7161 • FAX 805-526-7270

Project Name: Project Number:	Landfill Odor Investigation							IS
Project Manager:	Deborah Gray							urar
Company:	Stantec Consulting Services, Inc.							oxins and F TO-9A
				Sam	ole	Date		Di
Lab Code	Client Sample ID	# of Cont.	Matrix	Date	Time	Received	Send To	
P1302207-002	522Blank DF		Air	5/22/13	1515	5/24/13	HOUSTON	п
P1302207-003	522LF - DF		Air	5/23/13	1110	5/24/13	HOUSTON	п
P1302207-005	522HS - DF		Air	5/23/13	1209	5/24/13	HOUSTON	П

Test Comments

Dioxins and Furans - TO-9A

P1302207-002,3,5

17 Dioxin/Furans

2/1 5/1/:122003441

Please Address Report to:

Sp Deborah L. Gray

Stantec Consulting Services, Inc. 1500 Lake Shore Drive Suite 100 Columbus OH 43204

Issue Report directly to client: Deb.Gray@stantec.com; johnreiter@reiterih.com; samantha.henningsen@alsglobal.com

Invoice: samantha.henningsen@alsglobal.com

Relinquished By:

Received By: 5/24/13 805 Airbill Number: 8/0291008 6660

ALS Contact: Samantha Henningsen

Iseal

Report Requirements

III. Results + QC and Calibration Summaries

IV. Data Validation Report with Raw Data

I. Results Only

PQL/MDL/J

EDD

 \bigwedge II. Results + QC Summaries

N

N

Turnaround Requirements

RUSH (Surcharges Apply)

PLEASE CIRCLE WORK DAYS

Requested Report Date: 06/03/13

STANDARD

Requested FAX Date:

1 2 3 4 5

P1302207

29 of 35

Page 1

Invoice Information

PO#

Bill to

P1302207

Columbia Analytical Service	S ™C	A	ir - Chai	n of Custody	Record & Ar	nalytical Se	rvice Rea	uest		Page	of
2655 Park Center Drive, Suite A				-							
Simi Valley, California 93065 Phone (805) 526-7161 Fax (805) 526-7270				Requested Turnar	round Time in Busi	ness Days (Surc	harges) please	circle		CAS Project	No.
				1 Day (100%) 2 Da	ay (75%) 3 Day (50°	%) 4 Day (35%)	5 Day (25%) 10	Day-Stan	dard	L	
Company Name & Address (Reporting	Information)	*****	an te balla di ca di ca de de la constancese	Project Name		5			SAN	ANTH	esen
1500 LAKE SHORE	DRIVI	550 560 5505		Broject Number	1DIXETON	LANDE	14		Analysi	s Method	
COLUMBUS, OH	NSZO	4			608005						
Project Manager				P.O. # / Billing Infor	rmation	ð	n an				
Phone Light Light	Fax	love are	م معرفة المعرفة المراجع	T SA	<i>ime</i>						e.g. Actual
Email Address for Result Reporting	614	486 4.3	18+	Sampler (Print & Sign)				-		specific instructions
deb.gray \$ 57	ANTEC	.com		CHRIS LA	+Lonos / L	<u>the</u>	la la				
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code #-	Canister Start Pressure	Canister End Pressure 7 "Hg/psig	Sample Volume		998	
522BLANK PAH		5/22/13	15:15	NA	NA	47-144	FIELD	01		EPA T	b13 ·
522 BLANK DE		L	15:15			11025	Biank	1		EPA TO	5 9a
		ат. С	1. A.			ø					
522LF - DF		5/23/13	11:10	NA	1058	110-17-03	NA	362.0	COL	EPA-	to 9a
522LF- PAH			11:11	, des,	1057	HX-011	, line,	368	730L	EPA -	10 13
52245 - DF		5/23/13	12:09	NA	1061	110-16-03	NA	367,	4552	EPA	T09a
522HS - PAH		L	12:05	L	1059	HX-020		353,	535 L	EPA.	TO 13
							1				
P. CALL &	1000		8.10				19 19 19 19 19 19 19 19 19 19 19 19 19 1		-		
TLEASE N	JOIE	· · · ·	FUF	(DF)	TRE BEIN	<u>e ren</u>	RNED	UN-	USED	*	
			<u>ruf</u>	(FAH)	Susp	ECTED	BRE	AKA	GEE O	NAR	RIVAL
		Mild for the late of the second s	tanan ta danan da aktika ta da a sa ana pipu	ana para matana dia amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fis	SAM SMORAC WEIGHT BAD IN THE REPORT OF LAND AND		all en a la anna ann an an an ann an ann an ann an a				
Report Tier Levels - please select								L			
Tier I - Results (Default if not specified) Tier II (Results + QC Summaries)			Tier III (Results Tier IV (Data V	s + QC & Calibration Su alidation Package) 10%	ımmaries) 6 Surcharge			EDD requ Type:	iired Yes /	No 15ept	Project Requirements (MRLs, QAPP)
Relinquished by: (Signatura)	nan galanga kanangan kuntu kuntu penyenyenyenyenyenyenyenye	anna faid i ri ann a suaraiteachann ann ann	Date: 5/23/13	Time:	Received by: (Signat	ure)		I COMUNICATION DE DAS DE CAMPONICAS	Date:	Time:	8629 1008 6660
Relinquished by: (Signature) P1302207			Date:	Time:	Received by: (Signat		алаан байн балтаан атаа улаар байн улаас на байн алаас на байн ал		Date: 5/24/13	Time: 805	Cooler / Blank Temperature 21 °C

				Coole	er Receip	ot F	orm) Proj	ect Che	emist N	В		
Client/Project	Stante	c Consulting Se	ulting Services; Landfill Odor Investigation Se					ervice Requ	est P1	302207			
Date/Time Recei	ived:	05/24/13		08:05:00	iged in:)5/28/1	3	10	3				
Technician AL				Technician AL									
1. Method of delive	ery:	🔿 US Mail	(🖲 Fed Ex		\bigcirc	DHL (Courier	⊖Cli	ent			
2. Samples receive	d in:	Cooler	OB	ox 🔿 Env	velope 🔿 Oth	er 🗌							
3. Were custody se Were they s	als on c Were th signed a	oolers? ney intact? nd dated?	YesYesYes	○ No ○ No ○ No	○N/A ○N/A ○N/A	lf yes, l and wl	how ma here?	any					
4. Method of delive	ery: C	Inserts 🖉 Bag	gies 🕢	Bubble Wr	ap 🛛 🖉 Gel Pac	:ks (🔵 Wet l	ce 🔿 Sle	eves	🔿 Othei	r		
5. Foreign or Regul	lated So	il?	⊖ Yes	No	Location of	Sampl	ing:						
Cooler	Trackin	g Number		COC ID	Date Opened	l T Op	Time Dened	Opene	d By	Ten °(np. C	Temp Blank?	Filed
862910686660					May 24, 2013	080)5	AL		2/1			
6. Were custody pa	apers pr	operly filled out	t (ink, si	gned, date	d, etc)?			• Yes	0	No	ON/A		
7. Did all bottles ar	rive in g	jood condition	(not bro	oken, no si	gns of leakage)?			●Yes	0	No	∩N/A		
8. Were all sample	labels c	omplete (i.e., sa	mple I	D, analysis,	preservation, et	c)?		●Yes	0	No	∩N/A		
9. Were appropriat	e bottle	es/containers an	nd volur	mes receive	ed for the reque	sted te	ests?	●Yes	0	No	∩N/A		
10. Did sample lab	els and	tags agree with	custod	ly docume	nts?			Yes	0	No	⊖ N/A		

Sample ID on Bottle	Sample ID on COC	Identified by:

Sample ID	Bottle Count	Bottle Type	Out of Temp	Broken	Date	Technician

Notes, Discrepancies, & Resolutions:

Print Form

Reset Form

SAMPLE ACCEPTANCE POLICY

This policy outlines the criteria samples must meet to be accepted by ALS Environmental - Houston HRMS.

Cooler Custody Seals (desirable, mandatory if specified in SAP):

✓ Intact on outside of cooler, signed and dated

Chain-of-Custody (COC) documentation (mandatory):

The following is required on each COC:

- ✓ Sample ID, the location, date and time of collection, collector's name, preservation type, sample type, and any other special remarks concerning the sample
- \checkmark The COC must be completed in ink.
- ✓ Signature and date of relinquishing party.

In the absence of a COC at sample receipt, the COC will be requested from the client.

Sample Integrity (mandatory):

Samples are inspected upon arrival to ensure that sample integrity was not compromised during transfer to the laboratory.

- ✓ Sample containers must arrive in good condition (not broken or leaking).
- Samples must be labeled appropriately, including Sample IDs, and requested test using durable labels and indelible ink.
- \checkmark The correct type of sample bottle must be used for the method requested.
- \checkmark An appropriate sample volume, or weight, must be received.
- \checkmark Sample IDs and number of containers must reconcile with the COC.
- ✓ Samples must be received within the method defined holding time.

Temperature Requirement (varies by sample matrix):

- ✓ Aqueous and Non-aqueous samples must be shipped and stored cold, at 0 to 6° C.
- \checkmark Tissue samples must be shipped and stored frozen, at -20 to -10°C.
- ✓ Air samples are shipped and stored cold, at 0 to 6°C
- \checkmark The sample temperature must be recorded on the COC

All cooler inspections are documented on the Cooler Receipt Form (CRF). A separate CRF is completed for each service request. Any samples not meeting the above criteria are noted on the CRF and the Project Manager notified. The Project Manager must resolve any sample integrity issues with the client prior to proceeding with the analysis. Such resolutions are documented in writing and filed with the project folder. Data associated with samples received outside of this acceptance policy will be qualified on the case narrative of the final report.

Service Request Summary

	T /		
Folder #:	P1302207	Project Chemist:	Nicole Brown
Client Name:	Stantec Consulting Group, Inc.	Originating Lab:	SIMIVALLEY
Project Name:	Bridgeton Landfill	Logged By:	SHENNINGSEN
Project Number:	182608005	Date Received:	5/24 - 5/25/13
Domont Too	Deharah Cray	Internal Due Date:	6/3/13
Report 10:		QAP:	LAB QAP
	Stantee Consulting Services, Inc.	Qualifier Set	CAS Standard
	1500 Lake Shore Drive Suite 100	Formset:	CAS Standard
Dhana Niamhan	Columbus, OH 43204	Merged?:	Y
Phone Number:	014-480-4383	Report to MDL?:	Ν
Cell Number:	614-738-0791	P.O. Number:	
Fax Number: E-mail:	deb.gray@stantec.com	EDD:	No EDD Specified

					SIMIVALLEY	SVM
CAS Samp No	Client Samp No.	Matrix	Collec	ted	TO-13A/ PAH Scan Hi Vol	TO-9A/ Dioxins and Furans
P1302207-001	522Blank PAH	Air	5/22/13	1515	II	
P1302207-002	522Blank DF	Air	5/22/13	1515		II
P1302207-003	522LF - DF	Air	5/23/13	1110		II
P1302207-004	522LF - PAH	Air	5/23/13	1111	II	
P1302207-005	522HS - DF	Air	5/23/13	1209		II
P1302207-006	522HS - PAH	Air	5/23/13	1209	П	

3 _ 1 each-Cartridge PUF/Filter (High Volume)

3 _ 1 each-Cartridge PUF/XAD-2/Filter (Hi_Vol)

Location: E-Disposed, Shasta Lab

RUSH

Test	Comments:	
------	------------------	--

Group	Test/Method	Samples	Comments
Semivoa GCMS	Dioxins and Furans/TO-9A	2-3, 5	17 Dioxin/Furans
Semivoa GCMS	PAH Scan Hi Vol/TO-13A	1, 4, 6	all PAHs

Preparation Information Benchsheet

Prep Run#: 183767 Team: Semivoa GCMS/HLEUNG Prep WorkFlow: OrgExtDioxA(7)
Prep Method: Method

 Status:
 Prepped

 Prep Date/Time:
 5/28/13 03:00 PM

#	Lab Code	Client ID	B#	Method /Test	рH	Matrix	Amt.	Ext.	Sample Description	
1	EQ1300300-01	MB		TO-9A/Dioxins and Furans		Air	1.00	000		
2	EQ1300300-02	LCS		TO-9A/Dioxins and Furans		Air	1.00	000		
3	EQ1300300-03	DLCS		TO-9A/Dioxins and Furans		Air	1.00	000		
4	P1302207-002	522Blank DF	.01	TO-9A/Dioxins and Furans		Air	1.00	000	PUF	
5	P1302207-003	522LF - DF	.01	TO-9A/Dioxins and Furans		Air	1.00	000	PUF	
6	P1302207-005	522HS - DF	.01	TO-9A/Dioxins and Furans		Air	1.00	000	PUF	
Sp	iking Solutions			<u></u>		<u>I</u>	1			
-	8									
	Name: 23/TO-94	A Alternate Working Solution		Inventory ID 53663		Logbook Ref:	53663 HL	EUNG	1/15/13	Expires On: 01/15/2014
_	EQ1300300-01 40.	00μL EQ1300300-02 40.0)0µL	EQ1300300-03 40.00µI	<u>.</u>	P1302207-002	40.00µL	,	P1302207-003 40.00µL	P1302207-005 40.00µL
Ī	Name: 23/TO-9A	A Surrogate Working Solution		Inventory ID 57330		Logbook Ref:	57330 HL	EUNG	5/1/13 WT WM	Expires On: 05/01/2014
_	EQ1300300-01 40.	00μL EQ1300300-02 40.0)0µL	EQ1300300-03 40.00µI	<u>.</u>	P1302207-002	40.00µL	,	P1302207-003 40.00µL	P1302207-005 40.00µL
Γ	Name: 23/TO-9A	A Internal Working Solution		Inventory ID 58177		Logbook Ref:	58177 HL	EUNG	5/21/13 WT AK	Expires On: 05/21/2014
	EQ1300300-01 40.	00μL EQ1300300-02 40.0)0µL	EQ1300300-03 40.00µI	_	P1302207-002	40.00µL		P1302207-003 40.00µL	P1302207-005 40.00µL
	Name: 1613B M	atrix Working Standard		Inventory ID 58235		Logbook Ref:	58235 WN	1 5/23/	13 WT TL	Expires On: 05/23/2014
	EQ1300300-02 100	0.00μL EQ1300300-03 100	.00µL							
F	reparation Mate	rials								
C	arbon, High Purity	AL 4/30/13 (57260)		Ethyl Acetate 99.9% Minim	ım	MR 4/15/13 (56708)	1		Glass Wool	AL 1/17/13 (53816)
H	lexanes 95%	MR 5/13/13 (57848)		EtOAc Dichloromethane (Methylen Chloride) 99 9% MeCl2	e	MR5/13/13 (57889)			Sodium Chloride Reagent Grade NaCl	C2-65-5 (38670)
S	odium Hydroxide Reag	gent C2-73-7 (53023)		Sodium Sulfate Anhydrous Reagent Grade Na2SO4		MR 4/15/13 (56710)	1		Tridecane (n-Tridecane)	MR 4/15/13 (56663)
S	ilica Gel Reagent Grad	le AL 02/12/13 (54685)		sulfuric acid		MR 4/10/13 (56549)	1		Toluene 99.9% Minimum	MR 5/13/13 (57888)
F	Preparation Steps									
S	tep: Extraction	Step: Acid	Clean	Step: Silic	a Gel	Clean	Step:	Final V	Volume	
S	tarted: 5/28/13 15	:00 Started: 5/30/	13 08:00	Started: 5/31	/13 07	7:00	Started:	6/1/13	10:30	
F	inished: 5/29/13 07	:30 Finished: 5/30/1	13 08:10	Finished: 5/31	/13 09	9:00	Finished:	6/1/13	11:20	
В	y: WMCDON	NOUGH By: CDIA	Z	By: CDI	ΑZ		By:	CDIAZ	2	
C	comments	Comments		Comments			Comments			

Preparation Information Benchsheet

Prep Run#:183767Team:Semivoa GCMS/HLEUNG

Prep WorkFlow: OrgExtDioxA(7)
Prep Method: Method

 Status:
 Prepped

 Prep Date/Time:
 5/28/13 03:00 PM

Comments:

Reviewed By:	TL	Date:	6/3/13		
Chain of Custody					
Relinquished By:			Date:	Extract	tracts Examined
Received By:			Date:	Yes	es No